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Mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive insect 

currently devastating North American forests (Safranyik & Carroll, 2006). Native to western 

North America, the mountain pine beetle has recently expanded beyond its historic range, into 

the novel territory of Alberta, Canada. Since its arrival in the mid-2000s, the mountain pine 

beetle has diffused eastward at an average rate of 80km/year (Cooke & Carroll, 2017). Poised at 

the doorstep of the boreal forest, current concern anticipates the potential diffusion of the 

mountain pine beetle to eastern North America.  

The Maxent (maximum entropy) model, a presence-only spatial distribution model, is 

used to assess changes to future habitat suitability for the mountain pine beetle under future 

climate scenarios. Both a moderate (RCP 4.5) and extreme (RCP 8.5) emissions scenario are 

considered for the years 2050 and 2070. Through the application of the Maxent model, this 

research finds that a changing climate will dramatically decrease mountain pine beetle habitat 

suitability in Alberta, Canada, regardless of the emissions scenario under consideration. By 

examining the historical spatial distribution of mountain pine beetle infestation, this research 

identifies key environmental variables that might be used to predict the future diffusion patterns 

associated with the mountain pine beetle.  
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CHAPTER 1  

INTRODUCTION  

  

  

The purpose of this chapter is to provide a brief introduction to my thesis research 

assessing factors that covary with the continuous expansion of mountain pine beetle 

(Dendroctonus ponderosae Hopkins) into the eastern forests of North America. Native to 

western North America, and having coevolved with western coniferous forests, mountain pine 

beetles play an important ecological role which, at endemic, or normal, levels positively 

influences many natural processes. At epidemic levels, however, these small beetles can cause 

monumental damage, destroying widespread swaths of forest, causing significant economic, 

ecological and social impact (Figure 1.1).   

Epidemic levels of mountain pine beetle infestations have grown significantly over the 

past several decades in many areas of western North America. This increase is due to a 

combination of both anthropogenic and environmental factors. Anthropogenic factors, 

particularly historic land use practices, such as livestock grazing, logging as well as forest and 

wildfire management strategies, such as full suppression tactics (Morris et al., 2017), coupled 

with environmental factors of warming climatic trends and drier growing seasons (Bentz et al., 

2010) have contributed to the increase in frequency of mountain pine beetle epidemics.   

Full suppression is a wildland fire management strategy which seeks to extinguish any 

wildland fire, preferably within the first forty-eight hours of its ignition. This strategy was 

instated following increasingly devastating wildland fires between 1950 and 1988. Ignored, 

however, was the reality that fire plays an integral role to many of the forest ecologies in question. 

Ultimately, these tactics led to increasingly dense forests with over-mature trees and high 
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accumulations of brush at the forest floor level. Ironically, with more fuel, the tactic led to fires of 

such intensity that they were impossible to engage, let alone control. Another outcome was the 

creation of a stressed forest structure which engineered the perfect habitat for the mountain pine 

beetle, so that under the right climatic conditions, explosive population increases occurred year 

after year.    

  

 

Figure 1.1: Epidemic levels of mountain pine beetle near Bonaparte Lake, British Columbia, 

Canada. Source: K. Buxton, BC Ministry of Forests, Lands and Natural Resource Operations.   
  

The impacts of these epidemic outbreaks have been far-reaching and deeply damaging to 

the forests which provide a range of goods and services. These goods and services incorporate 

ecological, economic and social values, often referred to most broadly as ecosystem services (MA, 

2005). Impacts are seen in each western state (Figure 1.2) of the US as well as in Canada, where in 
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British Columbia alone, 710 Mm3 of lodgepole pine (Pinus contorta Douglas) have been killed by 

mountain pine beetle over the last decade. This devastation represents a loss of more than 50% of 

the total merchantable pine (British Columbia Ministry of Forests, 2012). Such mortality rates also 

impact the ecosystem services provided by these forests, including air purification, management of 

water run-off and soil erosion, production of wood and other forest products, climate regulation 

through carbon storage and other biophysical processes which affect the planetary energy balance 

(Morris et al., 2017). Further complicating this issue is the fact that wildfire management strategies 

may be modified due to real or perceived increased wildfire risk (Jenkins et al., 2014) (Figure 1.3). 

Societal impacts are also felt at local to regional scales, affecting property values, recreational 

experiences, tourism, and landscape aesthetics (Flint et al., 2009), which remain to be completely 

quantified economically (Maguire et al., 2015).  

  

 

Figure 1.2 : Bark beetle impacted forest in the Gila National Forest , New Mexico 

Source: Credit Tyler Corbin, 2018 

:     
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Figure 1.3: Significant wildfire near the Gila National Forest, New Mexico  

Source: Credit Tyler Corbin, 2018  

    

Though the range of mountain pine beetle was historically (pre-2000) bounded by the  

Rocky Mountains, several events coalesced to give the mountain pine beetle’s traditional range 

opportunity to expand. These specific events were, first, peak outbreaks of mountain pine beetle 

during the 2000s in British Columbia, Canada and, second, changes to atmospheric conditions 

which were capable of carrying mountain pine beetles up and over the Rocky Mountains on 

convective updrafts, successfully displacing the mountain pine beetle into the novel environment 

of Alberta, Canada. This displacement of the mountain pine beetle led to a series of outbreaks 

with millions of hectares of forest left dry and dying.   

The beetle, now established east of the Rocky Mountains, faces no other obvious 

geographic barriers to the Atlantic Ocean. Their diffusion in this novel environment has been 

steadily expanding eastward at an average rate of 80km/year (Cooke & Carroll, 2017). Though 



www.manaraa.com

5  

  

their preferred host, lodgepole pine (Pinus contorta), becomes less dense and more scattered 

moving east across Alberta, jack pine (Pinus banksiana), a naïve species, despite having not 

coevolved with the mountain pine beetle, has recently shown genetic evidence as a suitable host 

for mountain pine beetle colonization (Cullingham et al., 2011). Jack pine is the predominant 

species of the continental boreal forest, stretching west to east, across all of northern North 

America. Cudmore et al. (2010) show that mountain pine beetle brood success performed much 

higher in regions with naïve lodgepole pine than in lodgepole pine extant within the beetle’s 

historical native range. Additionally, a study conducted by Rosenberger et al. (2017), assessed 

mountain pine beetle reproductive success in species of tree common in eastern North America 

(jack, Pinus banksiana; red, Pinus resinosa; eastern white, Pinus strobus; and Scots, Pinus 

sylvestris). Mountain pine beetle reproductive success was documented in each species, 

suggesting that these novel hosts will pose no barrier to further range expansion (Rosenberger et 

al., 2017). Has an ecological bridge been established for the eastward spread of mountain pine 

beetle? If so, what are some of the environmental conditions that make this diffusion possible? 

Looking forward, how does habitat suitability for the mountain pine beetle change under future 

climate scenarios? These are the issues addressed in this thesis and are articulated in greater detail 

in the following chapters.  
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CHAPTER 2  

BACKGROUND  

  

  

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is an eruptive herbivorous 

bark beetle native to western North America. One of 600 species in the United States, bark 

beetles, aptly named, spend most of their lives beneath the bark of trees. To subsist, bark beetles 

mine the water and nutrients within the phloem layer of several pine species. While the majority 

of bark beetle species live in dead, weakened or dying hosts the mountain pine beetle is one of 

several which, unfortunately, targets, attacks and survives within living trees (USFS, 2014).  

Biology and Behavior  

Adult mountain pine beetles are dark brown to black, rather stout and cylindrically 

shaped, at about 5mm in length – about the size of a grain of rice (Taylor & Carroll, 2004), as 

seen in Figure 2.1. Beetles develop through four life stages, called instars: egg, larva, pupa, and 

adult (Bentz et al., 2009). Development rates are geographically variable, being highly dependent 

on ambient temperature. Temperatures must exceed 16°C to allow flight, or emergence, to occur 

(Reid, 1962; Schmid 1972; Billings & Gara, 1975). Safranyik and Jahren (1970) found that rates 

of daily emergence were proportional to cumulative degree-days beginning at about 14.4 °C  

(Figures 2.2 and 2.3).  
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Figure 2.1: Closeup of an adult mountain pine beetle  

Source: (NPS, 2018)  

 
Source: Johnson, 1982  
  

Most commonly, the mountain pine beetle is a univoltine species (hatching one 

generation per year). However, cases of bivoltinism have been documented with findings of 

simultaneous conditions of warmer winters and warmer summer temperatures at higher 

elevations (Mitton & Ferrenberg, 2012). Current knowledge of mountain pine beetle phenology 

comes largely from studies conducted within their historic range in British Columbia and in the 

United States (Bleiker & Hezewijk, 2016).   

  

  

Figur e 2.2 :   Mountain pine beetle life cycle    
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Figure 2.3: Frequency of emergence of mature mountain pine beetle in relation to temperature 

Source: Safranyik & Carroll, 2006  
  

With the exception of adult emergence from brood trees in search of new host trees, all 

life stages are spent in the phloem layer immediately beneath the tree bark. Adult emergence, or 

flight, typically occurs in late July through August. Flight has been found to start later and be 

more temporally contracted at higher latitudes (Bleiker & Hezewijk, 2016). Both in the historic 

and new ranges, flight periods for the mountain pine beetle have been found to be synchronous. 

This synchronous behavior, also called mass attack, is defined by hundreds of beetles descending 

upon a tree within a several, often less than two, days - a key strategy which results in 

successfully overwhelming the tree’s defenses. Female beetles initiate attacks, employing a 

combination of random landings and visual orientation (Hynum & Berryman, 1980) while 

assessing host suitability based on chemical compounds present in the bark (Raffa & Berryman, 
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1982). Although the phase beginning with emergence and ending with the selection of, and 

colonization of, new host trees is one of the most important phases of mountain pine beetle 

ecology, it is likely the least understood, as well (Safranyik & Carroll, 2006).  

According to Safranyik and Carroll (2006), tree characteristics which are selected by 

female beetles are trees with neither too thin a bark or too small a diameter (DBH – diameter at 

breast height) old trees - requiring a minimum bark thickness as well as the presence of bark 

scales and ridges. This preference for larger trees is due to the positive relationship between  

DBH and phloem thickness (Amman, 1969; Shrimpton & Thomson, 1985), which the larval 

broods feed upon. Once emerged, adults typically locate suitable host trees within two days of 

emergence, but are capable of searching for several days beyond that if no appropriate hosts are 

found prior to this time (Safranyik & Carroll, 2006).  

If the tree is acceptable, beetles begin to bore through the bark in order to construct 

galleries, within which they lay their eggs. As a female beetle penetrates the bark, it releases 

aggregating pheromones which instigate a mass attack, attracting hundreds of male and female 

beetles to the same tree within several (often less than two) days. Males also release an 

antiaggregating pheromone which prevents overcrowding by regulating the number of attacks on 

one tree. This leads to attacks on nearby trees, leading to groupings of dead trees across a landscape 

(Bentz, Kegley & Gibson, 2009), an important factor in interpretations of my research.  

Also, upon boring into the bark, beetles release spores of blue stain fungi, carried into the 

tree by the beetles. These spores germinate rapidly, killing living cells in both the phloem and 

xylem of the tree (Safranyik et al., 1975). The presence of this fungi greatly aids the success rate of 

an attack by incapacitating the ability of the tree’s sap to run freely. For more information about the 

symbiotic relationships between blue stain fungi and the mountain pine beetle, please refer to the 
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excellent article, “Integrating models to investigate critical phenological overlaps in complex 

ecological interactions: The mountain pine beetle-fungus symbiosis” (Addison et al., 2015).   

The process of boring into the phloem, the inner bark, essentially starves the tree of water 

and nutrients as the phloem acts as a matrix of food supply lines, carrying sap from the leaves to the 

rest of the tree and moisture and nutrients from the roots and trunk to the leaves. These bore holes 

serve as the first visible symptom that a tree has been attacked. These external signs are usually 

found on the lower bole of the tree trunk and are a mixture of (i) pitch tubes surrounding entry 

holes; (ii) boring dust scattered and piled at the base of the trunk; (iii) patches of missing bark 

picked off by woodpeckers in pursuit of bark beetle brood; and (iv) a pattern of tiny round 

emergence holes, about 2.5mm in diameter, through which newly developed adults emerge 

(Safranyik & Carroll, 2006). It is important to note that less healthy trees may not produce pitch 

tubes and that the remaining symptoms could be due to a variety of other causes. Therefore, these 

signs cannot stand as reliable indicators of mountain pine beetle attack by themselves (Safranyik & 

Carroll, 2006).  

Crown symptoms follow, when needles of successfully invaded trees begin to change 

color within several months to a year following the initial attack due to a loss of moisture. The 

visible symptoms of crown fading, first from green to greenish-yellow and later, yellow, to 

bright red to brown by the following year, depend on factors such as the timing of the attack, 

attack density, tree vigor and weather conditions (Safranyik & Carroll, 2006). Needles turn grey 

within three years of being attacked. Crown symptoms alone also cannot reliably serve as a 

precise timeline of mountain pine beetle attack. At the tree level, only sub-bark symptoms are 

definitive indicators (Safranyik & Carroll, 2006). For a description of sub-bark symptoms, please 
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see the informative article, “Mountain Pine Beetle: A synthesis of its biology, management and 

impacts on Lodgepole Pine” (Safranyik & Carroll, 2006).   

Range – Past and Present  

Pre-2000, the historic biogeographical range of the mountain pine beetle extended from 

northern Mexico (31°N), west to the Pacific Coast, east to the Black Hills of South Dakota, USA 

and into northern British Columbia (BC), Canada (56°N) – with small detached populations in 

Alberta and south-east Saskatchewan. This south to north boundary has been correlated 

historically with the –40°C isotherm (Safranyik, 1978). In terms of elevation, mountain pine beetle 

habitat ranges from near sea level in British Columbia to 11,000 feet (3,353 m) in southern 

California. Figure 2.4 shows that prior to 2000, the northern part of the mountain pine beetle's 

range was restricted to the west of the Rocky Mountains (Safranyik et al., 2010).   

Unfortunately, however, the range of the mountain pine beetle has recently expanded 

significantly. There are three predominant modes of mountain pine beetle dispersal:   

(i) emergence of beetle attack occurs in the nearest suitable host trees;   

(ii) beetles emerge to attack suitable hosts after a periods of flight exercise (Safranyik at al., 

1992); and   

(iii) beetles become caught in atmospheric convective upward drafts, where they are 

transported long distances by wind (Furniss & Furniss, 1972).   
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Figure 2.4: Historical distribution of mountain pine beetle (Dendroctonus ponderosae) and the 

distribution of lodgepole pine (Pinus contorta) and jack pine (P. banksiana); regions where 

lodgepole pine and jack pine hybridize are also indicated (adapted from Mu and Powell, 2001).  

Source: Safranyik et al., 2010.  
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Since the 2000s, the mountain pine beetle historic range has expanded when beetles from 

a massive epidemic which erupted in central British Columbia then blew over the Rocky 

Mountains on upper atmospheric winds and spread to northeastern British Columbia and 

northcentral Alberta (Jackson et al., 2008; Safranyik et al., 2010). This transference was 

confirmed by genetic analysis (Bartell, 2008). This diffusion event allowed the mountain pine 

beetle to clear the Rocky Mountains, previously an effective major geographic barrier (Robertson 

et al., 2009; de la Giroday et al., 2012). Now, east of the Rocky Mountains, with no other obvious 

topographic barrier, theoretically, no obstacles inhibit continued range expansion to the Atlantic 

coast (Safranyik et al., 2010).   

Long-range dispersal of mountain pine beetle for hundreds of kilometers is uncommon but 

not unprecedented. Previous documentation of mountain pine beetle dispersal range from the 

Rocky Mountains across the southern grasslands region as far as the Cypress Hills of southeastern 

Saskatchewan, Canada (Hiratsuka et al., 1982). The range expansion that is the focus of this 

thesis research, however, is novel in that the ecosystem to which mountain pine beetle has now 

expanded is contiguous boreal forest, stretching eastward and northward across Canada and into 

northeastern United States.   

Factors Affecting Range Expansion  

Numerous studies identify the many factors that can contribute to or impede the diffusion 

of the mountain pine beetle. These factors include temperature, elevation, precipitation, 

topography, latitude, the availability/continuity of host tree species, competition and predators. 

Climate conditions that are most favorable for conditions promoting mountain pine beetle diffusion 

and infestation include:  
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(i) seasonal temperatures which allow synchronous adult emergence and attack  

(Bentz et al., 1991; Safranyik et al., 2010),   

(ii) univoltine (one year life cycle) development, allowing the most cold-hardy brood 

stages to overwinter (Logan and Bentz 1999),   

(iii) a mild winter, promoting survival (Bentz and Mullins, 1999), and   

(iv) reduced precipitation during the growing season, negatively impacting host resistance 

(Safranyik et al., 1975).   

According to Bleiker (2017), cold winter temperatures have been identified as the most important 

factor limiting the diffusion and abundance of the mountain pine beetle (Safranyik, 1978; 

Safranyik et al., 2010).   

The world’s climate warmed by 0.6 ± 0.2oC during the last century, with the mean global 

temperature projected to increase by 1.4 – 5.8oC by 2100 (IPCC, 2007) as a result of human 

induced increases in atmospheric greenhouse gas emissions (Bentz et al., 2010). According to the 

Intergovernmental Panel on Climate Change (IPCC) the rise in temperatures is projected to 

exceed global mean increases, particularly at high latitudes and elevations. These increasing 

temperatures also have the potential to promote drought stress on host forests, reducing their 

defensive capacity to fend off mountain pine beetle colonization (Faccoli, 2009; Kolb et al., 

2016). Still, despite the excellent work already completed, increased understanding of bark beetle-

climate interactions, specifically the role of increasing fire frequency, wind and drought 

disturbances, is needed (Morris et al., 2017).  

In Alberta specifically, two different climate scenarios are considered. First, a scenario 

with increased international effort to promote reductions in greenhouse gas emissions and the 
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second, where humanity continues to emit increasing amounts of greenhouse gases. The Prairie 

Climate Centre (2017) reports the following:  

1. Regardless of the scenario, all of Canada is projected to get warmer in the future  

(Figure 2.5);  

2. Canada’s Artic will warm much faster than Canada’s south – with some months  

projected to experience a 12 oC increase;  

3. December and January are expected to warm much faster than the other months of the year;  

4. Southern Canada is projected to get much more precipitation in the spring, fall and winter 

months but much less in summer months.  

These projections are directly related to the diffusion and impacts of mountain pine beetle 

infestations in new regions, but there is great uncertainty of outcomes given the uncertainty 

involved in predicting future climatic conditions in Canada.  

Mountain pine beetle populations are highly sensitive to variation in mean annual 

temperature (Logan & Powell, 2001). In outbreak and non-outbreak years alike, mountain pine beetle 

populations that have been documented to establish and persist in new areas are slowly but steadily 

becoming climatically adapted due to a warmer environment (Logan & Powell, 2001; Carroll et al., 

2004).   

  

  



www.manaraa.com

16  

  

 

Figure 2.5: Alberta observed (left) and predicted climate change (center and right) 

Source: BMCAA (2019)  

      

As climate changes, so do the geographical ranges of many species. Numerous studies 

show that climate change-induced range migration – that of forests (Aitken et al., 2008), forest 

plants (Fitzpatrick et al., 2008) and bird migrations (Jenni & Kery, 2003), particularly, indicate a 

shift to higher elevations and higher latitudes (Parmesan & Yohe, 2003; Parmesan, 2006; Root et 

al., 2003;). These examples demonstrate the association between migrating geographical ranges, 

topography, and a warming climate. Direct climatic factors are generally believed to impose the 

cool boundaries of a species, while the interaction between species (host/predator, etc.) 

determines the warm limits of a species' distribution (MacArther, 1972; Parmesan, 2005). 

Therefore, as cool boundaries for the mountain pine beetle continue to extend northward, so too 

does the potential for the species' range expansion over time, especially in the absence of natural 

predators. The long-term rate of spread, or diffusion, of mountain pine beetle is thus intrinsically 

intertwined with the rate of climatic warming, in turn dependent on climate sensitivity to 
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greenhouse gas levels, which in itself carries uncertainty, as well as levels of anthropogenic 

greenhouse gas prediction, which is equally unpredictable (Cooke & Carroll, 2017).   

Hosts  

The preferred host of the mountain pine beetle is lodgepole pine (Pinus contorta) though 

most species of pine that grow within its range are readily attacked. These include: Ponderosa (P.  

ponderosa C. Lawson), western white (P. monticola Douglas), whitebark (P. albicaulis  

Engelm.), and limber pines (P. flexilis James) (NRCAN, 2017). Six eastern species of North  

American pine have also been attacked: eastern white pine (P. strobus L.), pitch pine (P. rigida  

Mill.), red pine (P. strobus L.), and jack pine (P. banksiana Lamb.) (Safranyik et al., 2010). 

Recently confirmed by genetic evidence, jack pine (P. banksiana Lamb.), the predominant 

species of the boreal forest, also is now a viable host for both attack and reproduction 

(Cullingham et al., 2011).   

As expected, the geographic ranges of the traditional hosts of the mountain pine beetle 

mimics that of the mountain pine beetle’s historic range (Figure 2.6). Since the summer of 2005, 

the rate of expansion has increased at an average rate of 80km/year eastward across Alberta 

(Cooke & Carroll, 2017). Some possibility of a slowing of this rate of spread exists as the 

mountain pine beetle population moves farther from traditional host populations in the dense pine 

stands of the Rocky Mountain foothills to the scattered, naive pine of the boreal plains. It is 

reasonable to expect, for example, that a 10-fold decrease in available trees per hectare would 

lead to a 10-fold decrease in the number of insects (Cooke & Carroll, 2017). Now, however, that 

jack pine, the predominant species of the boreal forest, appears to be an acceptable host, future 

predictions regarding mountain pine beetle diffusion remains uncertain. Other factors, such as  
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how the mountain pine beetle responds to relatively novel environments, the unpredictability of 

future weather and climatic conditions, and human efforts to limit colonization of new ecological 

areas also contribute to this uncertainty (Cooke & Carroll, 2017).    

Impact   

The mountain pine beetle is considered by researchers to be the most aggressive, persistent 

and destructive insect found within mature pine (Pinaceae) forests in western North America. 

According to Dale et al. (2001), it is estimated that insect disturbances affect an area that is almost 

Figure  2.6:   Estimated volumes of pine species in Canada   showing host connectivity   ( data from  

the Canadian Forest Service for est inventory) . Source:  S afranyik   et al., 2010     
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45 times as great as that affected by fire, resulting in an economic impact nearly five times as 

great. The mountain pine beetle has already had the greatest economic importance of all insects in 

the forests of western North America (Samman & Logan, 2000). The reason for this is that the 

mountain pine beetle is one of a few bark beetles that is a true predator that must kill its host in 

order to successfully reproduce (Heavilin et al., 2007). Although most of North America's bark 

beetles are native and play an integral ecological role in forest dynamics (Fleming et al., 2002; 

Sanchez-Martinez & Wagner, 2002), researchers believe recent outbreaks are increasing in 

frequency, severity and extent (Westfall, 2006; Kurz et al., 2008; Raffa et al., 2008).   

According to research by Safranyik and Carrol (2006), mountain pine beetle populations 

can be considered as having four distinct states: (1) endemic; (2) incipient epidemic; (3) epidemic; 

and (4) post-epidemic or collapse. Endemic populations are scattered and restricted to damaged or 

weakened pine trees. Incipient-epidemic populations have increased sufficiently to overcome the 

defenses of average diameter host tree species. Once the incipient epidemic phase has been 

reached, adding favorable climatic conditions to beetle survival, rapid spread across a landscape 

can occur, reaching the epidemic phase. Once the majority of large-diameter host species have 

been killed, the collapse phase initiates (Carroll et al., 2006).  

Epidemic phases of the mountain pine beetle have occurred in different regions at 

different times. According to Pedersen (2003), the two key factors that have contributed to the 

expansion of the mountain pine beetle epidemic are:   

1. the threefold increase since 1910 of the number of hectares of mature, susceptible lodgepole 

pine forests that are 80 years of age and older (Taylor & Carroll, 2004); and  

2. warmer climate conditions expanding the beetle’s range into previously unsuitable areas, 

particularly reaching higher latitudes and elevations (Carroll et al., 2004).   
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Historical outbreaks previously documented in central British Columbia, Canada 

occurred in the 1930s, 1970s, early 1980s and mid-1990s with a peak in 2005. In the mid-1990s, 

an outbreak affected more than 14 million ha of pine forests, an area more than ten times the size 

than any previously recorded outbreak (Safranyik et al., 2010). In 2003, a 100% increase in rate 

of spread and attack intensity since 2002 was recorded through aerial overview surveys (BC 

Ministry of Forests, 2004). According to Walton (2012), by 2011, over 700 million m3 of trees 

distributed over 18.1 million hectares of pine forests had been killed, representing approximately 

50% of the total merchantable pine volume in the province. This is expected to grow to more 

than 57% by 2021 (British Columbia Ministry of Finance, 2013). According to aerial surveys, by  

2014, 51,804 hectares were documented as being affected by mountain pine beetle, down from 

63,102 hectares in 2013. Economic impact is significant as the forest and logging sector is a long-

standing significant industry in British Columbia, with a direct contribution of CAN $1.65 billion 

to gross GDP in 2012 (British Columbia Ministry of Finance, 2013).  One study predicts that 

between 2009 – 2054, a cumulative loss of CAN $57.37 billion (US $44.63 trillion) (1.34%) to 

GDP will result from the impacts of mountain pine beetle damage (Corbett et al., 2016).   

The extent of mountain pine beetle infestation in Alberta is variable. Mountain pine beetle 

outbreaks first appeared in the province of Alberta, Canada during the summer of 2005. Since 

then, the mountain pine beetle has spread eastward across Alberta at an average rate of 

80km/year (Cooke & Carroll, 2017). In 2005, in attempts to reduce its spread, Alberta began an 

annual program to detect and eliminate mountain pine beetle populations along the presumed 

leading front. As of 2016, the mountain pine beetle continues to be the primary bark beetle 

causing tree mortality (Alberta Agriculture and Forestry, 2016).   
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Aerial beetle-kill forest surveys are completed annually by provincial governments in 

Canada. These surveys monitor locations of “red-attack” trees. Table 2.1 describes of attack 

phases of mountain pine beetle while Figure 2.7 illustrates the red and grey attack phases.   

  

Table 2.1: Phases of mountain pine beetle attack and descriptions   

 Attack Phase  Description  

Green Attack  Currently infested; pine needles begin to shift from green to yellow. 

Difficult to assess from aerial surveys  

Red Attack  Infested the year prior; pine needles turning red; highly visible – most 

aerial surveys monitor red attack. Timber is salvageable for a short 

time period.  

Grey Attack  Tree is now dead – needles have turned grey. Timber is largely 

unsalvageable.  

Source: Created by the author    

  

Scotia and Brown (2017) recorded a three-fold increase, from 11,853 red trees in 2016 to 

46,000 red trees in 2017 in the Edson Forest Area. According to the 2017 Bugs & Diseases 

Report for Alberta, Canada, while some areas are seeing increased rates of infestation, others are 

seeing significant declines (Scotia & Brown, 2017). For example, in 2015, 22,011 red trees were 

detected in the survey area. By 2017, however, only 2,601 red trees had withstood attack - 

presumably due to aggressive and sustained control efforts.    
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Figure 2.7: Mountain pine beetle red attack phase near Wolf Creek Pass, Colorado.   

Source: Photo taken by author, 2018  

  

In the United States, according to US Forest Service (USDA Forest Service, 2011), 

infestations of mountain pine beetle outbreaks have also been quite extensive, particularly in the 

states of Colorado and Wyoming. It is thought that these outbreaks were initially triggered by 

extended drought in the region during the late 1990s and early 2000s. More than 1.5 million 

acres of forest in northern Colorado are affected. Again, as in Canada, the infestation is a major 

threat to regional economies and public safety – due to falling trees and an increase in fuel 

loading for wildland fires. Another statistic provided in the Colorado State University (Colorado 

State University, 2017) documents a mortality rate of 1 in 14 trees in Colorado due to mountain 

pine beetle. The effects present themselves in numerous sectors of society. Excessive timber 

losses are perhaps the most obvious result but this level of landscape-level change also impacts 

the forest’s ability to purify air and water, protect against soil erosion, and also drastically change 
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a region’s wildland fire regimes by increasing fuel loading. Wildlife composition, recreational 

values, aesthetics and safety are also heavily effected (Safranyik et al., 1974; McGregor, 1985; 

Safranyik & Carroll, 2006).  According to the Aerial Survey Highlights for Colorado for 2017 

(USDA Forest Service, 2015; USDA Forest Service, 2017), epidemic levels of the mountain pine 

beetle have ended, for the time being, within Colorado. Since 1996, nearly 3.4 million trees have 

been affected by mountain pine beetle. In 2017, however, less than 900 acres newly attacked 

trees were reported.  This decline is believed to be due to a depletion of available host trees. 

Figure 2.8 shows recent remnants of beetle attack trees near Big Meadows Reservoir, Colorado. 

In contrast, Figure 2.9 shows the recent high level of impact in a National Forest in Montana, 

where hiking trails and camping were forbidden during the 2018 season due to concerns of public 

safety.  

  

 

Figure 2.8: Remnants of beetle attacked trees, this photo shows a mixture of red and grey attack 

trees located near Big Meadows Reservoir, Colorado. Trees with white trunks are aspen (Populus 

tremuloides) – not to be mistaken for grey attack conifers. Source: Photo taken by author, 2018  
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Figure 2.9: Mountain pine beetle has led to such extensive damage in the Big Snowy Mountains, Montana 

(a) that campsites and hiking trails remained closed throughout the 2018 season due to risk of falling trees 

(b). Source: Taken by the author, 2018  

     

a 
  

b 
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CHAPTER 3  

LITERATURE REVIEW  

  

  

This chapter will introduce previous research on the mountain pine beetle and the 

methods employed to analyze this remarkable diffusion. Biological invasions follow four 

common phases: arrival, establishment, spread and impact (Venette, 2015). In the mid-2000s, 

mountain pine beetle diffused beyond its native range into novel territories in Alberta, Canada.  

Since then, the mountain pine beetle has successfully established and spread at an average rate of 

80km/year (Cooke & Carroll, 2017). Findings from this research is of particular interest with 

respect to the diffusion of mountain pine beetle as it stands poised at the doorway of the boreal 

forest, forming an ecological corridor from western North America to eastern North America.   

The mountain pine beetle epidemic, having reached an unprecedented scale and intensity, 

has successfully expanded and established itself far beyond its native range. Now, stretching 

before the mountain pine beetle are the novel habitats of naïve forest species stretching from 

western North America to the Atlantic. Naïve host species, those which have not co-evolved with 

the disturbance agent in question, such as jack pine, have been confirmed as suitable for 

mountain pine beetle colonization (Cullingham et al., 2011). Again, the intent of this research is 

to assess the habitat suitability and potential diffusion of mountain pine beetle populations into 

these new ecosystems in order to both better understand the changing climatic variables which 

may be most relevant within this new terrain while also providing new information for forest 

managers and policy makers about the new potential risk to these valuable forests.   

It is essential to obtain a thorough understanding of prior research in terms of both the 

methodologies used to explore the diffusion patterns of invasive species and the actual findings related 
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to mountain pine beetle. A researcher must be adequately informed as to the succession of methods 

used in the past as well as current best practices which allows for the identification of gaps in the 

research and/or methodologies. This review has three related goals: 1) summarize work meaningful to 

the importance of establishing the rate of spread, or diffusion, of an invasive species; 2) review a 

variety of the methodologies used to map and model such diffusion and; 3) review all methodologies 

previously used to model the spread of the mountain pine beetle. The studies related to the modeling 

methodologies will be briefly summarized with a focus upon the data collection procedures, the most 

significant variables identified by this previous work, and the data analyses methods, results, 

conclusions, and noted limitations of prior studies.  

Rate of Spread  

Before generating projections of species diffusion, the rate of spread of the species must 

be estimated. There are numerous factors that influence this rate, including: presence and density 

of suitable habitats most vulnerable to invasion, suitable climatic conditions, interspecies 

competition, predation (Boone, Six, & Raffa, 2008) and host susceptibility and vigor (Cooke & 

Carroll, 2017). Once established, species begin to expand their geographic range in a process 

known as stratified diffusion where local growth and dispersal is paired with long distance 

movement (Shigesada, Kawasaki, & Takeda, 1995). If successful, these long-distance dispersed 

colonies eventually coalesce with the point of origin, greatly increasing the rate of spread and the 

colonized territory (Hengeveld, 1989; Shigesada & Kawasaki, 1997). Cycles of dispersal and 

establishment continue until all of the susceptible habitat is occupied (Liebhold & Tobin, 2008). 

Stratified dispersal has been observed and documented for numerous non-native species, 

including the Argentine ant (Linepithema humile) (Suarez, Holway, & Case, 2001), Africanized 

honeybee (Apis mellifera scutellate) (Winston, 1992), horse-chestnut leaf miner (Cameraria 
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ohridella) (Gilbert, Gegoire, Freise, & Heitland, 2004), emerald ash borer (Agrilus planipennis) 

(Muirhead, et al., 2006) and the gypsy moth (Lymantria dispar) (Liebhold, Haverson, & Elmes, 

1992).   

Insect disturbances are considered to have significantly damaging effects on the ecology 

and economy on Canadian forests. Successful establishment of an invasive species beyond its 

native range poses a significant threat to native ecosystem structure, productivity, diversity and 

function (Tobin et al., 2016). It is crucial to monitor, simulate, and predict insect disturbance 

processes in order to gain insights into past, present, and future forest ecosystem scenarios 

(Liang et al., 2017). Estimating the rate of spread of the species and modeling future projections 

of potential range expansion are integral components for the development of land and resource 

management plans and policies (Tobin et al., 2015).   

Methodologies used to Model Diffusion  

Diffusion models “build a simplified mathematical representation of the main features of 

the process as a time series of indicators describing the phenomenon of interest” (Jaakkola, 1996,  

p. 65). There are numerous analytical methods used to model diffusion, each carrying an 

associated list of assumptions and therefore presenting differing strengths and weaknesses. This 

complex process incorporates manipulation of a variety of variables and, depending on what 

phenomenon is being modeled, some methods are more appropriate than others for particular 

species and biomes. The study of diffusion has a rich history, being used for a wide breadth of 

topics ranging from biological to the adoption of technologies, such as the spread of: political 

ideologies and mobile phones (Jaakkola, 1996), marketing (Mahajan, Muller, & Bass, 1990), 

disease (Rahmandad & Sterman, 2008), and invasive plant and animal species (Ferrari, Preisser,  
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& Fitzpatrick, 2014; Hastings et al., 2005; Reeves & Usher, 1989; Safranyik, Silversides, McMullen L 

H, & Linton, 1989; Shigesada et al., 1995; West et al., 2016; Raghavan et al., 2019).  

Common Challenges in Modelling   

Three common challenges to quantitative modelling were identified by Venette (2015). 

First, developing a model which offers a more meaningful prediction of spread and impact than 

would be derived from random chance or intuitive models, (i.e. plant pests spreading to where 

suitable hosts are found). When models are made for areas in which the subject of interest has 

not yet arrived, extrapolations from what is known about the species in its native range are made 

and applied to the new locations. Further, simplifying assumptions about the invading 

population, such as individuals being the genetic equivalent of individuals in their native range 

will also mimic those of future generations. This, of course, is not the case specifically with the 

mountain pine beetle, whose larvae has shown to present varying cold tolerance based on 

geography (Régnière & Bentz, 2007). For example, a cold tolerance difference of 10oC in late-

instar larvae between north-central Alberta and southern British Columbia, Canada was found by 

recent research (Bleiker, Smith, & Humble, 2017). Second, validating the model – physical, 

conceptual, statistical or mathematical – presents a challenge as models are always an abstraction 

and simplification of reality. As our knowledge of biological invasions remains incomplete, 

models are intended to capture enough of reality in order to be useful (Venette, 2015). Lastly, 

Venette identifies portraying the results in a useful manner for the intended audience, often 

decision makers, as the third challenge. Scope, resolution, information loading and presentation 

offer just a glimpse of considerations the researcher should undertake throughout the modeling 

process.   
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Modeling Diffusion of Invasive Species 

Diffusion describes the means by which a species redistributes itself, passively or 

actively, in an area of concern after it has established (Venette, 2015). Numerous quantitative 

models have been developed in order to measure and forecast diffusion (Shigesada & Kawasaki, 

1997; Hastings et al., 2005). Later in this chapter, Table 3.2 offers a summary and comparison of 

many diffusion models.   

Species Distribution Models  

Species distribution models (SDMs), also known as bioclimatic envelopes, correlative 

niche models, or ecological niche models, are commonly used in the fields of macroecology, 

biogeography and biodiversity research to model the geographic distributions of species based on 

correlations between known occurrence locations and their associated environmental conditions  

(Gomes et al., 2018). SDMs are probabilistic models which statistically correlate species’ known 

occurrences within its present environment in order to estimate distribution and predict changes 

in their distribution under changing climates (Guisan & Zimmermann, 2000). SDMs are popular 

models due to the increase of availability of species location data as well as the ease of 

implementation of some of the modeling methods (Gomes et al., 2018).   

SDMs have been criticized for lacking mechanisms for independent validation (Araujo & 

Peterson, 2012). Further, two assumptions of SDMs are violated when modelling invasive 

species. First, SDMs assume the species’ ecological niche is stable in both time and space (the 

invasive species in its adventive area has similar environmental conditions of its native range) 

(Gallien et al., 2012). This assumption is not always met as the naturalized climatic niche of an 

invasive species can differ from their native climatic niche (Medley, 2010; Early & Sax, 2014; 

Parravicini et al., 2015). Second, SDMs assume that the species is at semi-equilibrium within its 
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environment, meaning the species has already spread to all suitable locations and is absent from 

all unsuitable locations (Guisan & Thuiller, 2005). Equilibrium of an invasive species is not met 

until the latest state of invasion (Barbet-Massin et al., 2018).   

Despite these limitations and while more studies are needed, SDMs of invasive species 

have been shown to adequately predict spread. Barbet-Massin et al. (2018) used SDMs to model 

the diffusion of the Asian hornet (Vespa velutina nigrithorax) which is invading Europe and is 

climatically driven. Their results show predictive accuracy was slightly, but significantly, better 

when their model was calibrated with invasive data only, excluding native data (Barbet-Massin et 

al., 2018).   

Comparing Interpolation Methods   

A study conducted by Tobin et al. (2015) demonstrated the application of three methods 

of interpolation, (square-root area regression, distance regression and boundary displacement) to 

estimate the diffusion rate of the gypsy moth, Lymantria dispar. The moth is a non-native 

invasive defoliator insect which currently occupies nearly three-quarters of the forested land 

considered to be susceptible in the USA (Tobin et al., 2015). In this study, both point and polygon 

data were used. Findings suggest that estimates for the rate of spread between the three methods 

were similar while using polygon data. Point data, however, generally provided greater spatial 

resolution in the verification of species presence (Tobin et al., 2015) (Table 3.1). Tobin et al. 

(2015) further describe the point data for this species, collected with pheromone baited trapping 

systems, as having the additional advantage of delineating measurements of abundance, or 

density. This is particularly valuable knowledge for management efforts as lower density 

populations may be more reactive to control tactics. This study shows that even with low-quality 
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spatial records of infestation, relatively simple mathematical approaches can be used to accurately 

estimate rates of diffusion (Tobin et al., 2015).   

Table 3.1: Comparison of point and polygonal data when estimating gypsy moth spread 

(Lymantria dispar ) using three analytical methods  

  

 

    Spread rate estimate (± SE), km/year   

Data Source  Moth threshold  Square-root area 

regression  

Distance 

regression  

Boundary 

displacement  

Polygon data  NA  1.1 (1.9)  9.6 (2.0)  9.9 (5.0)  

Point data  1  13.5 (2.3)  15.7 (0.3)  7.3 (3.0)  

  10  21.2 (1.2)  19.3 (0.5)  9.7 (2.8)  

  100  23.8 (2.2)  22.8 (0.6)  14.7 (10.5)  

   Overall  19.5 (3.1)  19.3 (2.0)  10.6 (3.7)  

 
  

Adapted from Tobin et al., 2015  

  

There are countless diffusion models in existence. Models continue to evolve to better fit 

their subject matter but many have come far from early, generic versions. Table 3.2 summarizes a 

variety of models varying from approaches focusing on population dynamics, using statistical 

forecasting to incorporating spatial heterogeneity, to incorporating competition and evolution of 

the species in question – the mountain pine beetle, for example. Concerning the incorporation of 

evolution, Garcia-Ramos & Rodriguez (2002) modeled the influence of local adaptation on 

invasion in a spatially heterogeneous environment, and found that the rate of adaptation to local 

conditions can be the key limiting factor to spread, especially where large differences between 

habitat patches exist.    
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Table 3.2: Descriptions of diffusion models with examples  

  

 
 Square-root  Distance-to-time analysis using    

 regression  successive measurements of invaded  

  

area  

  
Distance regression  Regresses the distance from an 

infested location from a reference   

point on the year it first became   

infested (Gilbert & Liebhold, 2010)  

  (Tobin et al., 2015)  

Boundary displacement Estimates rate of spread by considering 

displacement distances   

between pairs of consecutive 

invasion boundaries (Tobin et al., 

2015).  

Integro-difference   

 

 

 

 

 

 

 

 

 

Estimates spread velocity  

 

 

 

 

 

 

 

 

House finch of North America 

(Veit & Lewis, 1996), the 

Holocene spread of trees 

(Clark, 1998; Clark et al., 

2001); Oak trees across Britain 

after the last glaciation 

(Skellam, 1951); Earth worms 

in an agricultural field 

(Marinissen & van den Bosch, 

1992)  

Approaches using statistical forecasting:   

 

 

Modeling Method   Description of Model   Examples   

Approaches using analytical methods   

Approaches using population dynamics: (most common)   
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Table 3.2 - Continued  

Modeling Method Description of Model Examples Examples 

Survival analysis  Used to predict how long a location 

will remain free of an invading 

species  

Phytophthora lateralis, a root pathogen 

of a riparian tree (Jules et al., 2002)  

Incorporating Spatial Heterogeneity: 

Reaction-Diffusion Models spread of a single species is 

examined in an environment with 

periodic variation in diffusivity 

and/or growth rate 

Gleditsia triacanthos 

Lithraea ternifolia in Argentine 

forests (Marco & Paez, 2000; 

Shigesada et al., 1986; Shigesada & 

Kawasaki, 1997) 

Gravity Movements are not random but are 

biased by the attractiveness of 

destinations; invasions mimic 

satellite introductions instead of a 

moving wave  

Zebra mussel spread (Bossenbroek, 

Kraft, & Nekola, 2001); Spatial spread 

of a genetically modified microbe 

with presence of a competitor 

(Cruywagen, Kareiva, Lewis, & 

Murray, 1996) 

Individual-based Incorporate detailed information 

about individual fecundity, dispersal 

and landscape structure 

Landscape level predictions of Pinus 

radiata in S. Africa (Higgens et al., 

1996) 

Data-based 

stochastic 

Incorporates corridors Spread of rabies on heterogeneous 

landscapes (Smith et al., 2002) 

Percolation Theory How spatial heterogeneity affects 

not only the rate of spread, but its 

final outcome; Relationship between 

disturbance and the spread of 

invaders (With, 2002) 

 

Source: Created by the author  
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Diffusion Modeling of Mountain Pine Beetle (MPB)  

Forest insect disturbances, the mountain pine beetle included, remain a particular 

challenge to prediction efforts due to the highly dynamic nature of insect behavior (Liang et al., 

2017). Listed and described below are several of the many approaches that have been used to 

depict, predict, assess and manage mountain pine beetle outbreaks in the following order: remote 

sensing, general linear models, equation-based models, agent-based models (ABM), cellular 

automata (CA), ForestSimMPB, STAMP (spatial-temporal analysis of moving polygons) 

followed by a comparison of three popular contemporary SDM models, Maxent, boosted 

regression trees (BRT), and generalized linear models (GLM). Please refer to Table 3.2 for a 

summary of these modeling methods for mountain pine beetle.  

Remote Sensing   

Wulder et al. (2006) found that analyses of Landsat imagery in conjunction with diffusion 

models used to predict red attack damage in a mixed-stand forest had an accuracy of 86% 

(Wulder et al., 2006). Remote sensing, in combination with ancillary spatial data, has been used 

to create a mountain pine beetle red attack likelihood surface which accurately identifies 

damaged forest stands at the landscape scale (Perez & Dragicevic, 2010). Landsat imagery, 

though coarse at 30-meter2 resolution, was also used to map outbreak locations and tree mortality 

(Meigs et al., 2015). Liang et al. (2014) analyzed a decade-long Landsat time-series stacked with 

the aid of automatic attribution of change detected by the Landsat-based Detection of Trends in 

Disturbance and Recovery algorithm (LandTrendr) in order to characterize mountain pine beetle 

outbreak patterns. These change-detection analysis maps have an overall accuracy ranging from 

87% to 94% (Liang et al., 2014). These maps are coupled with predictor variables  
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(anthropogenic, biologic and physical) in a general linear model (GLM) framework and the findings 

are discussed in the GLM section.  Other researchers have utilized a range of additional remotely 

sensed products, such as GeoEye-1 (Dennison, Brunelle, & Carter, 2010), which provide high-

resolution (0.46 meter) satellite imagery. Although GeoEye-1 provides detailed spatial and temporal 

information, unfortunately, the high cost and difficult accessibility make it less than practical for repeat 

management applications (Morris et al., 2017). However, remotely sensed images extracted from the 

use of drones presents a promising technique for high-value, smaller areas, although it is not yet 

understood how these images will be integrated with satellite and aerial imagery (Morris et al., 2017).  

Equation-based Models   

Equation-based models represent the most popular approach for insect diffusion models 

(Perez & Dragicevic, 2010). These mathematical equations, however, fail to take into account 

some of the spatial dynamics which influence the phenomenon (Perez & Dragicevic, 2010). 

Spatial distribution of the mountain pine beetle has been studied through the lens of many spatial 

statistic methods (Campbell, Alfaro, & Hawkes, 2007). Perez & Dragicevic (2010) utilized agent-

based modeling (ABM) paired with the analytical capabilities of geographic information systems 

(GIS) to model mountain pine beetle infestation at two spatial scales – at the local, treelevel scale 

and the landscape scale – to study how micro-level mountain pine beetle outbreaks create 

infestation patterns which affect macro scale forest health. These authors developed this GIS-AB 

approach, notably freely available (http://repast.sourceforge.net/download.html), to simulate 

mountain pine beetle infestation over forest landscapes primarily consisting of lodgepole pine 

(Pinus contorta) with Douglas-fir (Pseudotsuga mensiesii) at smaller proportions and White 

Spruce (Picea glauca) distributed throughout the landscape. Aerial overview survey data and five 

different raster GIS datasets showing forest cover attributes of tree species, age, height, health 

http://repast.sourceforge.net/download.html
http://repast.sourceforge.net/download.html
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state and diameter at breast height (DBH). Their results from the simulation for a landscape 

scenario over a 10-year period, using both moderate and extreme winter tree-mortality rates, 

showed mountain pine beetle infestation locations remain in close proximity to previous attack 

sites during the first four years, but are more dispersed over longer periods of time. 

Cellular Automata  

Liang et al. (2017) employed an insect-CA (cellular automata) modeling framework, 

integrating remote sensing, GIS and cellular automata to predict the mountain pine beetle 

mortality patterns. Results ranged from 88% to 94% accuracy, showing this method has a high 

degree of effectiveness for modeling forest insect dynamics. Additionally, results showed that a 

small neighborhood size is the most effective in simulating the actual movement of mountain pine 

beetle, indicating short-distance as the predominant dispersal mode of the mountain pine beetle.  

ForestSimMPB  

ForestSimMPB is a novel model approach which integrates Swarm Intelligence (SI) 

theory and agent-based model within a GIS framework in order to determine the spatial pattern 

associated with mountain pine beetle attacks (Pérez & Dragićević, 2011). Inclusion of swarm 

intelligence theory presents a strength to this model in that it incorporates the unique biological 

behavior of the mountain pine beetle, with specific regard to emergence, aggregation and attack 

behavior. The use of an agent-based model is also a strength as it allows incorporation of a 

heterogeneous forest landscape. Further, these authors operated the model over three sites: 1) 

pure lodgepole; 2) geographic barrier scenario; and 3) mixed forest scenario. Results suggest that 

the forest composition, artificial barriers, and the trees’ health status influence the spatial 

distribution of insects and their general behavior during an outbreak (Pérez & Dragićević, 2011). 

These authors also note that including wind and elevation data would contribute an improved 
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understanding with respect to the effect of these variables on mountain pine beetle behavior. The 

main drawback of this approach at this time is that it remains to be validated due to the difficulty 

of gathering sufficient forest data over a wide temporal range for the study areas. Cost may also 

be a significant issue given the extent of post-2000 mountain pine beetle outbreaks and the 

limited resources of the agencies charged with mitigation efforts.  

STAMP – Spatial-temporal analysis of moving polygons  

STAMP, a recently developed pattern-based approach, was used by Robertson et al., 

(2009) to illustrate fine-scale spatial dynamics of processes associated with mountain pine beetle 

range expansion. These scholars studied the movement patterns of mountain pine beetle 

infestations in areas where range expansion was occurring across three regions in the Canadian 

Rocky Mountains. Based on aerial survey data from 1999-2005, Robertson et al. (2009) found 

that dispersal patterns of the mountain pine beetle vary with geography and host/beetle population 

dynamics. While habitat connectivity was found to facilitate successful colonization, long range 

dispersal patterns to new distant locations was found to be common during periods of low overall 

range expansion whereas a locally connected dispersal pattern was found during periods of rapid 

invasion (Robertson, et al., 2009). Through the use of STAMP, trends in the number and size of 

the polygons by year were determined, revealing both fine- and coarse-scale patterns of changes 

in mountain pine beetle biogeographical range over time.   

Cooke & Carroll (2017) used a synthetic framework which modeled future spread rates 

across Canada as a function of coupled nonlinear recruitment dynamics that arise from the 

distinct population phases of the mountain pine beetle, and correlated thermal response functions 

that are characteristic of the influence of climate and climate change on ecosystem processes. 

Population growth dynamics, they state, are relevant to dispersal in that population levels 



www.manaraa.com

38  

  

determine the number of diffusers able to travel long distances. Their study differs from previous 

studies, which have examined spread risk factors individually, by “providing a synthetic 

perspective on the role of synergistic nonlinear process interactions in expected rates of 

population growth and spread” (Cooke & Carroll, 2017, p. 13). This study uses normalized insect 

survey data from British Columbia and Alberta, Canada, pine volume density maps, and three 

indices of mountain pine beetle climatic suitability (an index of seasonality, winter survival, and 

summer and winter climatic suitability). Climatic suitability maps were computed using BioSIM, 

a standard tool used to generate spatial maps of mountain pine beetle climatic suitability (Bentz et 

al., 2010; Cooke & Carroll, 2017). Two climate models (drying climate and warming climate) 

and one forest health scenario (an increase in the ratio of stressed to vigorous trees) are combined 

with the goal of predicting the possibility of eruption from endemic to epidemic phases. “This 

synthetic model shows a classic “tipping point” model that is capable of identifying sudden, 

unanticipated behavior due to nonlinear determinacy, multivariate causality, stochasticity, and 

uncertainty in model parametrization and specification” (Cooke & Carroll, 2017, p. 19). Results 

show that warm, dry conditions lead to an increased probability of severe mountain pine beetle 

outbreaks. Five sources of uncertainty are identified:  

(1) The incompleteness of precise knowledge of all drivers, interactions and functional 

parameters which affect eruptive behavior;  

(2) The potential for variations in drought may lead to region-specific impacts;   

(3) Adaptive seasonality (life cycle events occurring synchronically with ephemeral 

resources (Logan & Powell, 2003) will degrade and may cause a sudden decline in 

climatic suitability;  
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(4) Large areas of jack pine through eastern Alberta and Saskatchewan are already infected 

with dwarf mistletoe and its impact on the trees defense capabilities;  

(5) Finally, the authors acknowledge that mountain pine beetle brood success is higher in 

naïve lodgepole pine hosts, but it is not known how jack pine, another naïve host 

species, will affect mountain pine beetle brood success.   

Importantly, the study also reflects upon the unpredictability of a long-term spread rate, as it is 

reliant on the rate of climate warming, which is related to uncertain greenhouse gas emissions, of 

which the share of anthropogenic activities producing greenhouse gas is equally uncertain. For 

additional research suggestions, see the article.   

Comparing Three SDMs  

Sidder et al. (2016), compared the suitability of three species distribution models (SDMs) 

– Maxent, boosted regression trees, and generalized linear models – to evaluate how the climate 

niche, potential distribution, and climatic drivers of the mountain pine beetle have changed 

across three time periods. The climate niche is defined as the range of climatic conditions 

conducive to mountain pine beetle outbreak (e.g. upper and lower temperature thresholds found 

in occupied habitat). Potential distribution is defined as the spatial extent where suitable 

topography and climate exists for mountain pine beetle outbreak. Lastly, climate drivers refer to 

those climate variables which are identified as most influential with respect to mountain pine 

beetle outbreaks. Forty-five initial variables were narrowed down to fourteen through testing for 

significant correlations based on Pearson, Spearman, and Kendall coefficients. Highly correlated 

variables were filtered using expert knowledge of mountain pine beetle ecology and were 

selected to represent seasonal climatic influences (Table 3.3). Summaries of the comparisons of 

the three models used in this study follow.  
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Maxent. Maxent (maximum entropy or closest to uniform), freely available and hosted 

online at https://biodiversityinformatics.amnh.org/open_source/maxent/, is one the most 

popular recent SDMs (Renner & Warton, 2013). It is a self-contained Java application for 

species distribution modeling based on occurrence (locations of presence of the species) 

while also incorporating environmental variables (temperature and rainfall) for a 

surrounding area (Phillips et al., 2006; Phillips & Dudik, 2008). This presence-only 

model is advantageous as it allows for the use of the plentiful data sources from archived 

natural history collections, greatly reducing the cost, in both time and money, of 

sampling a species throughout its geographic extent (Gomes et al., 2018). While presence 

data may be abundant, absence data are more difficult to obtain and often less reliable, 

due to the required high field survey efforts. To account for this, “Maxent uses a 

background sample to contrast the distribution of presences along environmental 

gradients against the distribution of background points, randomly drawn from the study 

area” (Gomes et al., 2018, p. 4; Sidder et al., 2016). Therefore, modeling techniques that 

require only presence data are extremely useful (Graham et al., 2004). Evangelista et al., 

(2011) also employed the Maxent model in order to estimate forest vulnerability and 

potential distribution across three bark beetle species (mountain pine beetle 

(Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine 

engraver (Ips pini)) across a study area of eight states in the interior west, equaling 2.2 

million km2 of  

 

 

 

 

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
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 Table 3.3: Predictor variables used in the three niche models by Sidder et al. (2016).  

  

Variables  Description  Rationale  

CMD  Hargreaves climatic moisture deficit (CMD). 

Sum of the monthly difference between 

reference atmospheric evaporatie demand and 

precipitation. A higher CMD reflects a greater 

moisture deficit.  

Drought affects the host 

tree’s ability to defend itself 

against bark beetle attack 

(Safranyik, 1978). 

Belowaverage precipitation 

across the growing season 

correlates with an increased 

MPB (Carroll et al., 2006).  

PAS  Precipitation as snow (PAS, mm) between 

August of previous year and July of current 

year.  

  

PPT_sp  Spring precipitation between March-May.    

PPT_sm  Summer precipitation between June-August.    

PPT_at  Autumn precipitation between 

SeptemberNovember.  

Reduction in autumn moisture 

immediately following attack 

benefits larval overwinter 

survival (Amman, 1978).  

bFFP  Julian date on which the frost-free period (FFP) 

begins.  

Spring temperature affects the 

larval development (Aukema 

et al., 2008).  

eFFP  Julian date on which the frost-free period ends.  Early onset of frost period in 

the late summer and autumn 

may affect the egg and larval 

development (Safranyik, 

1978).  
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Table 3.3 – Continued  

Variables  Description  Rationale  

Tmin_wt  

  

DD_0_wt  

Winter mean minimum temperature (℃).  

  

Winter-degree days below 0℃.  

Severe winter temperatures 

can reduce overwinter 

survival and cause 

widespread beetle mortality 

(Safranyik, 1978; Sambaraju 

et al., 2012).  

DD_0_sp  Spring degree-days below 0℃.  Spring temperature affects 

larval development (Aukema 

et al., 2008).  

DD18_sm  Summer degree-days above 18℃.  Summer heat accumulation 

affects many aspects of the 

MPB life cycle, including 

emergence, flight, and egg 

hatch (Sambaraju et al., 2012)  

elevation  

  

slope  

  

aspect  

Digital elevation model (DEM) at 1-km 

resolution  

  

Maximum change in elevation between each  

cell and its eight neighbors.  

Downslope direction of a grid cell.  

Topographic variables 

roughly define a suitable 

topography for host species 

(Safranyik, 1978; Sambaraju 

et al., 2012).  

  

Adapted from Sidder et al., 2016  

  

the interior Rocky Mountains. Using both moderate and extreme climate projection 

scenarios for both 2020 and 2050,  results from Evangelista et al., (2011) showed that 

suitable habitats for both the mountain pine beetle and pine engraver will stabilize or 

decrease. Habitat for the western pine beetle was shown to increase, however.  
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Boosted Regression Trees (BRT). Boosted regression trees are “an ensemble method for 

fitting statistical models that use regression trees and boosting to combine many simple 

models and improve performance” (Sidder et al., 2016, p. 7). The authors fitted the BRT 

model with SAHM (Software for Assisted Habitat Modeling) and experimented with 

parameters for the learning rate and tree complexity with the goal of having at minimum 

1000 trees and biologically senisble response curves (Sidder et al., 2016).    

General Linear Models (GLM). General linear models are based on maximum likelihood 

regression principles and use standard linear regression techniques (Long & Lawrence, 

2016). GLM is a regression approach which fits parametric terms using some 

combination of linear, quadratic, and/or cubic terms (Elith et al., 2006). Liang et al. 

(2014) analyzed a decade-long Landsat time-series generated maps to characterize 

mountain pine beetle outbreak patterns. The research coupled these maps with a general 

linear model (GLM) and a set of anthropogenic, biologic, and physical predictor 

variables. After a stepwise removal of insignificant variables, findings indicated 

neighborhood mortality, winter mean temperature anomalies, and residential housing 

densities are positively correlated with mountain pine beetle morality while summer 

precipitation was found to be negatively correlated (Liang et al., 2014). Additionally, 

Sidder et al. (2016) found that generalized linear models reduced omission error and had 

greater predictive success when compared to Maxent or boosted regression trees, though 

each of the three models generated reasonable predictions.  

Significant results of Sidder et al. (2016) include an indication of expansion of climatically 

suitable habitat for mountain pine beetle over the last fifty years – particularly with an upward 

shift in the mean elevation across the US Rocky Mountain region. Additionally, their models 
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indicate drought is a more prominent driver for current mountain pine beetle outbreaks than 

temperature, suggesting a climatic signature change from historic to current outbreaks. Results 

also show a reduction in climatically suitable habitat although it appears that high elevation 

forests have an increase in potential susceptibility. In addition, a comparison of the three methods 

in this same article resulted in reasonable accuracy for all three, though these authors state that the 

simpler, generalized model predicted a higher percentage of current outbreak locations with a 

reduced omission error while both Maxent and BRT were the topperforming historical models. 

The next chapter, based on this review of literature, will outline the data and methods used in my 

research.  
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CHAPTER 4 

DATA AND METHODS  

  

  

The recent diffusion of the mountain pine beetle (MPB) well beyond its native range 

coupled with changing global climate regimes has made future predictions regarding this 

troublesome species quite difficult. Areas that were once thought inhospitable and safe from 

invasions now have the potential to become ideal habitat as winters become increasingly warm, 

precipitation becomes more variable and host forests experience increased stress as they adapt to 

these fast-changing climatic conditions. While previous research has analyzed mountain pine 

beetle distributions across the interior west of the United States using Maxent, Alberta remains 

uncharted territory for these type of analyses over the time period selected for the project and it 

is hoped information derived from the application of Maxent models will contribute to a general 

understanding of the current threat and challenge. This chapter will describe the research 

methods and data used for this thesis intended to assess habitat suitability across Alberta, Canada 

for the mountain pine beetle.   

Study Area  

Again, the location for this thesis research is Alberta province of Canada. Alberta, a land 

locked, western province of Canada, is situated within the square of British Columbia to the 

west, the Northwest Territories to the north, Saskatchewan to the east and the US state of  

Montana to the south (Figure 4.1). Alberta has an area of nearly 661,848 square kilometers 

(255,500 square miles). Elevation ranges from 3,747m (12,293 ft) in the southwest of the 

province to 152m (499 ft) in the northeast. Mountains and foothills range along the southwestern 

boundary (Figure 4.2). The Great Plains, composed of largely treeless areas in the eastern and 
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southern regions, sweep eastward across the province, representing part of Canada’s great “grain 

belt”. In contrast, the northern half (57% of the province) is covered in boreal forest that is 

predominantly composed of aspen (Populus tremuloides) and white birch (Betula papyrifer) in the 

south shifting to white spruce (Picea glauca), larch (Larix occidentalis) and black spruce (Picea 

mariana) to the north. Lodgepole pine (Pinus contorta) and alpine fir (Abies lasiocarpa) are 

found in the west while the previously discussed jack pine (Pinus banksiana) and balsam fir 

(Abies balsamea) are found in the east.   

  

 

Figure 4.1: Alberta, Canada. Source: Created by author  
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Figure 4.2: Landscape in mountainous southwest Alberta, Canada with grey-attack trees Source: 

Taken by author, 2018  
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Alberta experiences a humid continental climate with four distinct seasons. Due to 

Alberta’s great extent, ranging over 1,200km (750 mi) from north to south and from east to west, 

climate varies greatly. Average winter extremes range from -54°C in northern Alberta to -46°C in 

southern Alberta. Average winter temperatures, however, vary from 0°C in the southwest to    -

24°C in the north. Winter temperatures in the southwest are often moderated by incoming 

chinook winds from the Rocky Mountains. Average summer temperatures range from 21°C in 

the Rocky Mountains and in areas north, to 28°C in the prairies of the southeast. Alberta 

experiences a significant number of sunny days – totals ranging from 1900 to 2500 hours per 

year - and summer experiences 18 hours of daylight. Due to the presence of the Rocky 

Mountains, precipitation is often deposited on the windward side of the mountains, creating a 

rain shadow which extends over the majority of Alberta. Annual precipitation ranges from 300 

mm (12 in) in the southeast to 450 mm (18 in) in the north. The leeward foothills of the Rocky 

Mountains record a mean annual precipitation of 600 mm (24 in). To the point for this thesis, 

thirty-eight million hectares of Alberta are forested, resulting in Alberta’s third largest industry, 

and contributing $5.3 billion to the economy (Alberta Chambers of Commerce, 2016).  

Approximately 60% of coniferous forest in Alberta is composed of trees aged 80 years or older 

(Alberta Agriculture and Forestry, 2018). Between the 2004/2005 fiscal year and 2012, the 

government of Alberta devoted $336 million for mountain pine beetle control and mitigation 

(Government of Alberta, 2013). If current projections hold true, this sum will get much greater 

before it declines due to intermittent infestation-driven deforestation.  

Research Design  

Maxent (Maximum Entropy Modeling) was selected for this study to create a species distribution 

model for the mountain pine beetle across Alberta. As mentioned in Chapter 3, species distribution 
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models (SDMs) are widely used in biogeography, macroecology and biodiversity research. Maxent, 

one of the most commonly used contemporary SDMs, is a machine-learning algorithm which 

calculates a species’ probability distribution based on outcomes predicting maximum entropy, or in 

other words, that which is closest to a uniform solution.   

Again, as noted in Chapter 3, Maxent is a presence-only model, allowing for the 

incorporation of a wide range of types of date sources, from natural history collections to field 

collected data, to be utilized by scientists while avoiding the high costs of sampling a species 

throughout its range (Gomes et al., 2018). The model is nonlinear, nonparametric and is not 

sensitive to multicollinearity (Evangelista et al., 2011).  Such modeling techniques which require 

only presence data are of extreme value due to data limitations and available resources in terms of 

both cost and time for surveys and data analyses (Graham et al., 2004). Maxent has become 

increasingly popular since its introduction in 2004. Using presence, or occurrence, data, Maxent 

is designed to allow researchers to model a species’ geographic distribution based on correlations 

between known occurrence records and the associated environmental conditions at those 

localities (Phillips et al., 2006). When applied to presence-only species data, the pixels of the 

study area constitute the space over which the Maxent probability distribution is defined (Phillips 

et al., 2006).   

While presence data may be abundant, spatially registered absence data are much more 

difficult to obtain and as noted earlier, are often unreliable due to insufficient survey effort or 

resources (Gomes et al., 2018). In response to the lack of absence data, Maxent uses a background 

sample to contrast the distribution of occurrences along environmental gradients against the 

distribution of background points, selected at random from the study area (Gomes et al., 2018). 

Thus, to create a model, Maxent generates background points randomly for comparison against 
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observed presence data. Maxent also requires data that reflect actual environmental conditions as 

inputs. These variables are most often sourced from the WorldClim BioClim list of 19 climatic 

variables, noted previously, which contain a range of moderate to high resolution climatic data 

and have been used by many researchers in conjunction with the Maxent model (Baldwin, 2009; 

Evangelista et al., 2011; Rochlin et al., 2013; DellaSala et al., 2011; Dowling, 2015; Abrhaet al., 

2018; Zhang et al., 2018; Raghavan et al., 2019). This study follows the conventions established 

in this previous research and discussed extensively earlier in the thesis.  

Maxent software version 3.4.1 is freely available online 

(www.cs.princeton.edu/%7Eschapire/ maxent). A complementing tutorial with accompanying test 

data is also provided, with thorough instructions for data preprocessing as well as useful 

introductions to Maxent’s features and capabilities. Numerous university faculty as well as 

scientific researchers have posted additional tutorials to further illustrate the previous uses of 

Maxent. In addition, an active Google group exists for Maxent, providing a live forum for past, 

current and potential users of the software to help new adopters troubleshoot many potential 

problems. As more and more work is completed using this software, the resources represented by 

the Google group (https://groups.google.com/forum/#!forum/MAXENT) will become ever-more 

valuable.  

The use of the Maxent model produces several outputs, one of which is an html file, which 

allows the editing of results. In addition to modeling a species’ current distribution, Maxent has 

built-in capabilities to project potential future distributions by incorporating two sets of 

environmental conditions as two unique sets of variables. To be clear, current environmental 

conditions build the model while environmental conditions sourced from climate models 

projecting future changes using the MESS (Multivariate Environmental Similarity Surface) 

analysis tool, incorporated in the model.   

https://groups.google.com/forum/#!forum/MAXENT
https://groups.google.com/forum/#!forum/MAXENT


www.manaraa.com

51  

  

Maxent output produces several charts, including the Area Under the Receiver Operating 

Characteristic (ROC) Curve, or the AUC. For each run, the AUC returns a number between zero 

and one, indicating how well the model performs. A value of 0.5 indicates the results may be 

near to random whereas confidence increases as the AUC value nears 1.0. The output also 

produces results which test the contribution of each incorporated environmental variable in two 

different ways – jackknife tests and analysis of variable contributions. Jackknife tests identify the 

most significant variables by rank order by testing each variable in isolation and comparing its 

relative contribution to explanatory prediction power to that of all the incorporated variables. The 

analysis of variable contributions also provides the percent of total prediction that each variable 

contributes to the model.  

In addition, the Maxent model also produces a raster file which displays habitat suitability 

on a 0 – 1 range. The habitat suitability threshold is defined by the user. In this study, a 

sensitivity criterion of 90% is used to discern between suitable and unsuitable habitat for 

diffusion of the mountain pine beetle. Maxent outputs this graphic in an ASCII file (.asc) which 

can be converted, using the ArcGIS ASCII to Raster tool in Spatial Analysis. This feature allows 

for further analysis of mountain pine beetle habitat suitability across the study area through the 

production of raster-based maps for each time period under investigation.  

  

Data for the Analysis  

Several forms of data are required for Maxent analysis. Presence data for the mountain pine 

beetle, kindly provided by the Forestry Division of Alberta Agriculture and Forestry, serves as the 

biological data that constitutes the core of the model. Nineteen current climatic variables, detailed 

in Table 4.1, are required in order to train the model to accurately reflect conditions within all 
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areas where the mountain pine beetle is known to reside within the study area. Bioclimatic 

variables are sourced from the monthly temperature and rainfall values in order to generate more 

biologically meaningful variables (Hijmans et al, 2005). Finally, future climate scenario data are 

also required so that future habitat suitability for the mountain pine beetle can be projected into 

the future.    

  

Table 4.1: WorldClim's 19 bioclimatic variables  

 

Variable  Description  

BIO1  Annual Mean Temperature   

BIO2  Mean Diurnal Range (mean of monthly (max temp – min temp))   

BIO3  Isothermality (BIO2/BIO7) (*100)   

BIO4  Temperature Seasonality (standard deviation * 100)   

BIO5  Max Temperature of Warmest Month   

BIO6  Min Temperature of Coldest Month   

BIO7  Temperature Annual Range (BIO5 – BIO6)   

BIO8  Mean Temperature of Wettest Quarter   

BIO9  Mean Temperature of Driest Quarter   

BIO10  Mean Temperature of Warmest Quarter   

BIO11  Mean Temperature of Coldest Quarter   

BIO12  Annual Precipitation   

BIO13  Precipitation of Wettest Month   

BIO14  Precipitation of Driest Month   

BIO15  Precipitation Seasonality (Coefficient of Variation)   

BIO16  Precipitation of Wettest Quarter   

BIO17  Precipitation of Driest Quarter   

BIO18  Precipitation of Warmest Quarter   

BIO19  Precipitation of Coldest Quarter   

Source: Adapted from Hijmans et al., 2005  
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Presence Data 

Point data for mountain pine beetle presence in Alberta, Canada were graciously provided 

through the Forestry Division of the Alberta Agriculture and Forestry Department. Until 1995, 

forest pest surveys were conducted annually by the Forest Insect and Disease Survey (FIDS) unit 

of the Canadian Forest Service. In these early years, surveys were conducted from fixed wing 

aircraft, based on the services of a trained sketch-mapping surveyor who delineated affected 

polygons and rated associated damage levels. In 1997, provincial governments took control of the 

responsibility of conducting all insect surveys within their provinces. Methodologies used across 

provinces then diverged. Once infestation spread to Alberta in 2005, Alberta developed a  

“zero tolerance” policy to the mountain pine beetle. From this point forward, the methodology 

used in Alberta to conduct the insect surveys used helicopters equipped with GPS (global 

positioning systems) to more accurately locate individual clusters of attacked trees, with 

identification resolution for these surveys often down to a single tree. These methods are 

considered to have produced much more accurate results in terms of the identification of 

infestation locations and infestation levels all with spatial georeferencing as compared to the 

previous fixed wing survey efforts, whereby location was often only roughly estimated (Cooke & 

Carroll, 2017). Though there are known limitations to the data, the data has been used numerous 

times to make reliable large-scale inferences for studies referenced previously in Chapter 3 in 

this thesis (Aukema et al., 2006; Chen et al., 2015). For further description of how this data is 

obtained and its known limitations, please see Appendix A.  

  Regardless of the methods for collection, point data for the presence of the mountain pine beetle 

has been collected on a nearly annual basis, going back to 1975. For the purpose of this study, point 

data from year 2017 is used to train and test the model. Upon investigating the data, it was found 
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that many years contained point locations for red attack trees that were sourced from other causes 

than mountain pine beetle attack. Using ESRI’s ArcMap 10.6.1, only records that were designated 

as mountain pine beetle attack were retained from the original annual aggregated datasets. Also, this 

point data was further processed in order to match the geographic extent, coordinate system and 

pixel size of the climate data – a strict requirement for Maxent. Ultimately, all occurrence data was 

converted to CSV files to include only three columns, in this order: species, longitude and latitude. 

The 2017 dataset incorporated 17,628 records of mountain pine beetle occurrence within the study 

area.  

Environmental Data 

Environmental variables of interest include both current climatic variables (Table 4.1) 

and projections of these climatic variables in the future as well as elevation above sea level (m) 

and a binary variable reflecting the presence/absence of forest land use/land cover across the 

study area. All climatic variables were obtained through WorldClim version 1.4  

(http://worldclim.org/) which are already downscaled and bias corrected. These bioclimatic 

variables have been shown to support more effective model development as compared to 

monthly data alone, as insects are easily affected by fluctuations in temperature (Kumar & 

Stohlgren, 2009).   

Data for current climate conditions were obtained from WorldClim’s 19 bioclimatic 

variables (see Table 4.1) as GeoTIFF files. Climatic variables based on future climate scenarios 

were obtained from the CCSM4 climate model, based on CMIP5, for the years (2050 and 2070). 

Moderate Representative Concentration Pathway (RCP) 4.5 as well as the identical variables 

generated using a less optimistic scenario of RCP 8.5 were downloaded for both time frames,  

http://worldclim.org/
http://worldclim.org/
http://worldclim.org/
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2050 and 2070. RCP 4.5 predicts that emissions will peak in 2040 and then stabilize. In contrast, RCP 

8.5 predicts that emissions will continue to grow past 2100.  All climatic variables were selected at a 30-

second resolution, equal to roughly 1km2, or 0.00833333333 degrees.   

Maxent requires that all environmental variables be of the same geographic extent, spatial 

resolution and projection coordinate system (Evangelista et al., 2011). Therefore, all 

environmental variables were also processed using ArcMap 10.6.1 to create a consistent and 

appropriate dataset within a common scale. To accomplish this, the Extract by Mask tool was 

used, setting the variable BIO1 as the mask and altering the Environment settings so that each 

operation matched the exact geographic extent, resolution and projection system of BIO1. 

ModelBuilder was then utilized to expedite the process and ensure that each layer (each variable) 

was generated in precisely the same manner for exactly the same pixel and scale. Figure 4.3 

details the data development steps used to prepare all data for inclusion in the model.  

 

Figure 4.3: Extract by Mask operation ModelBuilder used in ArcGIS 10.6.1 Source: 

Created by the author  

  

Once all data were standardized, using ArcMap, all resulting layers were converted from  
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GeoTIFF files to ASCII files using: Toolbox > Conversion Tools > From Raster > Raster to ASCII, 

ensuring the resulting output file ended in .asc. All resulting datasets are sent to a unique directory for 

subsequent use in the Maxent model runs (Figure 4.4).  

 

Figure 4.4: Process used to convert raster files to ASCII files in ArcGIS 10.6.1. Source: Created by 

the author  

    

Finally, elevation data and land cover data were obtained through Geospatial Data 

Extraction (http://maps.canada.ca/czs/index-en.html). A larger land cover dataset was 

reclassified to include only three land use/land cover (LULC) categories: (1) conifer forests 

(code 210); (2) broadleaf forests (code 220); and (3) mixed forest (code 230). The remaining 

land use/land cover categories were classified as no data and masked out of the study analyses. 

The resulting raster dataset representing only forested areas was then converted to an ASCII file 

for use in Maxent and subject to the same data processing procedures as the steps used to process 

the climatic variables that are described above.  

Model Inputs and Parameters  

    This section will outline the inputs and all parameters that were tuned for use in the  

  

  

http://maps.canada.ca/czs/index-en.html
http://maps.canada.ca/czs/index-en.html
http://maps.canada.ca/czs/index-en.html
http://maps.canada.ca/czs/index-en.html
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Maxent user interface. Mountain pine beetle presence data for 2017 is linked to the “Samples” 

file. The bioclimatic variables for the current climate scenario are linked to “Environmental 

Layers”. A unique output folder is designated for each model run and then the prepared future 

climate projection data is individually linked to “Projection layers directory/file”. The output type 

is Logistic and file type is .ASC.   

Parameters are tuned to include a 10 percentile training presence threshold rule. By doing 

this, suitable habitat is defined to include 90% of the data, the portion used to develop the model. 

This was designated under Settings > Advanced > Apply threshold rule > 10 percentile training 

presence as suggested by previous successful research efforts (Evangelista et al., 2011; Dowling,  

2015). Each analysis included 10 replications, using a different set of randomly selected 

(bootstrap) occurrence points for training and validating the model. These results were then 

averaged across the 10 replicates for a single results model. AUC values and associated estimates 

of variable contributions in percentage values were recorded for each model. 30% of the 

occurrence points are typically withheld for model validation, in accordance with Evangelista et 

al. (2011). The number of iterations for each run was increased from the default value of 500 to 

5000 in order to allow smoothing and improve model performance. This is done so that the 

model is permitted an adequate number of iterations to assure convergence. Without adequate 

iterations for convergence, the model may over or under-predict. All other parameters remained 

set at the default settings.   

The first Maxent run includes the current climate data. A separate run is conducted for 

each of the two emissions scenarios, 4.5 and 8.5, for each 2050 and 2070, resulting in a total of 

five models (Table 4.2).  Each model was run in two sets. Initially, all 21 environmental 

variables are included. Finally, a second set of models is run, using only the top four contributing 
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variables, as recommended by previous research (Papes, 2018). These four top contributing 

variables were recorded, including their numeric contribution, given in percent.  

 

Table 4.2: Summary of five Maxent models   

Model Run  Description  

A  Current climatic variables only  

B  Projection for climate scenario 2050, RCP 4.5  

C  Projection for climate scenario 2050, RCP 8.5  

D  Projection for climate scenario 2070, RCP 4.5  

E  Projection for climate scenario 2070, RCP 8.5  

Source: Created by the author  

  

Graphic representations of results are also included in the Maxent output. Analysis of the 

graphic results can be conducted in ArcGIS by importing the .ASC file and converting it to a 

raster file (Arc Toolbox > Conversion Tools > To Raster > ASCII to Raster). The preset,  

“Integer” needs to be changed to “Float”, allowing the results to range from 0 to 1. In order to display 

the results as binary - suitable and unsuitable habitat – the raster values need to be reclassified using 

the Reclassify tool. Under ‘Classify’, designate the classification method to be  

‘Manual’ with two ‘Classes’. The break value used for the first class should be gleaned from the 

threshold value, which is found in the Maxent ‘Results’ CSV under “10 percentile training 

presence logistic threshold”.  In ArcGIS, a range of the lowest number to this threshold is 

classified as zero (unsuitable), while the range above this threshold is classified as one (suitable). 

The resulting raster displays the two classes, zero and one, unsuitable and suitable habitat for the 

species at hand, in this case, the mountain pine beetle. The area of land infested by the beetle 

(and not infested) can be calculated by exploring the raster count in the attribute table. Results of  

 all analyses are presented in Chapter 5.    
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CHAPTER 5  

RESULTS  

  

  

In this chapter, Maxent model results are depicted both numerically and graphically.  

Overall model performance is evaluated using the Area Under the Receiver Operating 

Characteristic (ROC) Curve, or the AUC. As described in Chapter 4, AUC values range from 0 

to 1, with a result of 0.5 indicating that results may be random with confidence increasing as the 

value nears 1.0. Again, binary maps created to show suitable versus unsuitable habitat under 

current and future climatic conditions are provided as figures, followed by the quantified area 

and percent reduction in habitat suitability. Environmental variables are assessed both by their 

percent contribution and a jackknife test of variable importance. The jackknife test of variable 

importance sifts through the environmental variable in two ways - where first, the model 

eliminates one variable at a time and reporting the most important variable. Second, the jackknife 

test runs each variable independently, reporting which variable has the most information not 

present in any other variable. Again, 21 total environmental variables are used as dependent 

variables for introduction into the Maxent models.  Prior to model results, descriptive statistics 

are provided to contextualize the resulting models. Table 5.1 provides the descriptive statistics 

for all variables under the current climate scenario used in the baseline model. As will be clear 

later in the chapter, the four variables that are retained in the model are shown in Table 5.2.  

Descriptive Statistics  

Table 5.1 provides the mean, range and standard deviation of elevation and the 19 bioclimatic 

variables (forests, the 21st environmental binary variable, is categorical, not continuous and is 

excluded from the statistical analysis). The study area incorporates a wide spectrum of elevation, 
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with a low ranging from 171 meters in the Slave River to a high of 3,523 meters at Mount 

Columbia (Figure 5.1). Average annual precipitation (Bio12) ranges from a low of 270mm to a 

high of 836mm while precipitation of the warmest quarter (June, July, August) (Bio18) has a range 

from 118mm to 310mm (Figure 5.2). Annual mean temperature (Bio1) ranges from a low of -8.6℃ 

to a high of 6.2℃. Mean temperature of the warmest quarter (Bio10) ranges from a low of 0.2℃ to 

a high of 18.7℃ while the minimum temperature of the coldest month (Bio6) ranges from a low of 

-31.8℃ to a high of -12.0℃ (Figure 5.3). Figures 5.1 – 5.3 offer insight into the spatial distribution 

of each variable in Alberta, Canada and are helpful in understanding the final habitat suitability 

maps produced by Maxent.  

Model Performance  

Maxent model performance is evaluated using the Area Under the Receiver Operating 

Characteristic (ROC) Curve, or the AUC. As described in Chapter 4, AUC values range from 0 

to 1, with a result of 0.5 indicates the results may be random with confidence increasing as the 

value nears 1.0. All models performed reasonably well, with AUC values ranging from a 

minimum of 0.715 to a maximum of 0.794. Individual model AUC values are reported in 

parentheses in Table 5.4.   
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Table 5.1: Descriptive statistics of the current climate variables used in the analysis 

Bio1 Annual Mean Temperature   ℃  0.29 -8.60 6.20 2.16 

Bio2 Mean Diurnal Range (mean of monthly (max temp – min temp))   ℃  12.22 8.20 15.30 1.02 

Bio3  Isothermality (BIO2/BIO7) (*100)   % 2.65 1.90 3.60 4.01 

Bio4  Temperature Seasonality (standard deviation * 100)  % 1157.87 684.40 1468.30 183.96 

Bio5 Max Temperature of Warmest Month   ℃  22.28 7.30 28.80 2.13 

Bio6 Min Temperature of Coldest Month   ℃  -23.42 -31.80 -12.00 4.42 

Bio7 Temperature Annual Range (BIO5 – BIO6)   ℃  45.71 27.90 53.00 47.09 

Bio8 Mean Temperature of Wettest Quarter   ℃  13.94 7.40 18.60 2.14 

Bio9 Mean Temperature of Driest Quarter   ℃  -6.98 -21.30 12.20 3.54 

Bio10 Mean Temperature of Warmest Quarter   ℃  14.17 0.20 18.70 1.91 

Bio11 Mean Temperature of Coldest Quarter   ℃  -15.36 -23.90 -5.50 4.30 

Bio12 Annual Precipitation   mm  453.66 270.00 836.00 7.88 

Bio13 Precipitation of Wettest Month   mm  77.14  52.00 116.00 1.33 

Bio14 Precipitation of Driest Month   mm  18.29  7.00 47.00 0.52 

Bio15 Precipitation Seasonality (Coefficient of Variation)  % 52.07 16.00 72.00 1.08 

Bio16 Precipitation of Wettest Quarter   mm  205.84 128.00 309.00 3.74 

Bio17 Precipitation of Driest Quarter   mm  61.23  28.00 174.00 1.78 

Bio18 Precipitation of Warmest Quarter   mm  205.08 118.00 310.00 3.79 

Bio19 Precipitation of Coldest Quarter   mm  69.49  28.00 214.00 2.17 

DEM Digital Elevation Model  m 750.82 171.00 3523.00 409.62 

Source: Calculated by author 

Variable  Description  Unit  Mean  Minimum   Maximum  
Standard 

Deviation  
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464.25  270.00   –   846.00  

20.01  - 27.60   -   - 9.10  

200.89    107.00 –   318.00  

476.09    273.00 –   869.00  

17.29    4.10 –   22.40  

20.00  - 27.90   -   - 8.300  

191.19    103.00 –   304.00  

475.18  273.00   –   864.00  

19.21    6.10 –   24.50  

Table 5.2: Descriptive statistics of the four variables retained in the final model for each future climate scenario. 

Climate Model Variable Description Unit  Mean Range Standard 

Deviation 

B: 2050, RCP 4.5 Bio18 Precipitation of the warmest quarter  mm 199.02 110.00 – 303.00 3.80 

Moderate  Bio12 Annual precipitation mm 8.31 

Emissions  Bio10 Mean temperature of warmest quarter  ℃  16.91 3.80 – 21.9 1.93 

Scenario Bio6 Minimum temperature of coldest month ℃  - 4.06 

Scenario Bio6 Minimum temperature of coldest month ℃  - 4.13 

D: 2070, RCP 4.5 Bio18 Precipitation of the warmest quarter  mm 4.12 

Moderate  Bio12 Annual precipitation mm 8.62 

Emissions  Bio10 Mean temperature of warmest quarter  ℃  1.96 

Scenario  Bio6 Minimum temperature of coldest month ℃  - 4.43 

E: 2070, RCP 8.5 Bio18 Precipitation of the warmest quarter  mm 3.59 

Extreme  Bio12 Annual precipitation  mm 8.10 

Emissions 

Scenario  

Bio10 

Bio6  

Mean temperature of warmest quarter  

Minimum temperature of coldest month 

℃  

℃  -18.27 

 2.03 

-25.30 – -7.10 3.99 

Source: Calculated by the author 

C: 2050, RCP 8.5 

Extreme  

Emission  

Bio18 Precipitation of the warmest quarter  mm 3.78 

Bio12 Annual precipitation  mm 462.79 267.00 -856.00 8.17 

Bio10 Mean temperature of warmest quarter  ℃  17.70 44.00 – 22.80  2.00 
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Figure  5 .1:  Topo graphic map of Alberta, Canada  

Source: Created by the author   

Figure 5.2 :  Annual precipitation (Bio12) (a) and  precipitation of the warmest quarter (June, July,  

August) (Bio18) (b) in Alberta, Canada during current climate conditions. Source: Created by author  

( a ) ( b ) 
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Figure 5.3: Annual mean temperature (Bio1) (a) ;   minimum temperature of the coldest month  

( January) (Bio 6)   ( b);   and mean temperature of the warmest quarter (June, July, August) (Bi o10) in  

Alberta, Canada under current climate conditions.   Source: Created by the author   
  

( a )   

( c )   ( b )   
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Habitat Suitability Distribution Maps   

  Turning to the visualizations of the Maxent results depicted in Figures 5.4 and 5.5, these 

maps show some very interesting results. The maps for future scenarios clearly indicate a 

continuous spatial reduction in habitat for the mountain pine beetle over time. The binary maps 

shown in Figure 5.5 were created using a sensitivity criterion of 90% to discern between suitable 

and unsuitable habitat for the future diffusion of the mountain pine beetle, as described in 

Chapter 4.   

Model A, incorporating only current climatic conditions, identifies suitable habitat for the 

mountain pine beetle located along the eastern slopes of the Rocky Mountains with an additional 

concentration that has broken out in central Alberta. Figure 5.4 shows a comparison between the  

Division of Forestry’s mapped results of the 2017 annual mountain pine beetle survey (a) and the 

Maxent model output for the distribution of mountain pine beetle in 2017 under current climate 

conditions (b) (Model A). This comparison provides validity to the Maxent model’s performance 

as the extent and location of infestation in both maps is nearly identical. The aggregate sum of 

suitable habitat is to approximately 68,368 km2 for 2017 (Table 5.3). This habitat is considered to 

represent the current location and extent of mountain pine beetle infestation and is used as a 

baseline for future comparison. Model A performed reasonably well, with an average test AUC 

of 0.793. Counter-intuitively, and perhaps the most important finding of the study, future 

projection models, again, show a decline in suitable habitat for the mountain pine beetle.  

All independent models using future climate projections (models B, C, D and E) predict 

decreasing habitat suitability for the mountain pine beetle (Figure 5.5). Model B, incorporating 

the climate scenario for 2050 RCP 4.5, reports a habitat suitability decrease of 68%, to 21,604   
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Figure 5.4: Forestry Division of the Alberta Agriculture and Forestry Department’s annual 

mountain pine beetle survey map for 2017 (a) showing their representation of mountain pine 

beetle infestation compared to the Maxent output (b) representation of infestation extent 

under current climate conditions (Model A). Geographic coordinate systems differ.  Source: 

(a) (Alberta Agriculture and Forestry, 2017), (b)  Created by the author  

  

( b )   ( a )   
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Figure   Predicted habitat suitability of the mountain pine beetle future climate projections. Two  5.5: 

emissions scenarios, RCP 4.5 (B and D) and 8.5 (C and E), were modeled for each 20  (B and C)  50 

and 2070 (D and E), respectively. RCP 4.5 represents a moderate em issions scenario; RCP 8.5  

represents an extreme emission scenario. Red areas show suitable habitat and gray areas show  

unsuitable habitat. Average test AUC was 0.778.    

( B )   ( C )   

( D )   ( E )   
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km2. Model C, incorporating the climate scenario for 2050 RCP 8.5, reports a habitat suitability 

decrease of 78%, to 15,156 km2. Model D, incorporating the climate scenario for 2070 RCP 4.5, 

reports a habitat suitability decrease of 75%, to 17.038 km2. Finally, Model E, incorporating the 

climate scenario for 2070 RCP 8.5, reports a habitat suitability decrease of 92%, to 5,729 km2 

(Table 5.3).   

These results, and their consistency across scenarios, are both interesting and important. If 

results of Maxent are valid, several conditions may be developing over time. Of course, there is 

no way of knowing, based on these results, which of the outcomes is most probable but they do 

offer baseline insights into future possibilities.   

  

Table 5.3: Predicted area (km2) of suitable habitat for mountain pine beetle.  

 Model  Total Area (km2)  Area Decrease (km2)  Percent Decrease (%)  

 
 A  68,368      

 B  21,604  46,764  68  

 C  15,156  53,212  78  

 D  17,038  51,330  75  

 E  5,729  62,639  92  

  

Note: Model A uses current climate data, representing the current extent of the mountain pine 

beetle and serves as a baseline for comparison; Model B uses climate projection data for 2050,  

RCP 4.5 (moderate emissions); Model C uses climate projection data for 2050, RCP 8.5 (extreme 

emissions); Model D uses climate projection data for 2070, RCP 4.5 (moderate emissions); and 

Model E uses climate projection data for 2070, RCP 8.5 (extreme emissions). Source: Created by 

the author  
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Variable Contributions and Relative Importance  

The Maxent model analyzes environmental variables both by considering their percent 

contribution to model performance (Table 5.4) and also by performing a jackknife test of variable 

importance (Figure 5.6). Of the 21 total environmental variables included, four climatic variables 

consistently rose to the top as having the highest percent contribution. Precipitation of the 

warmest quarter (Bio18), typically representing the months from June to August, is the variable 

with the highest contribution, with an average contribution of 31.6% (Table 5.4). Annual 

precipitation (Bio12) has the second highest predictive power with an average contribution of 

13.5%. Throughout all five models, variable Bio18 consistently outperforms all other variables, 

accounting for the highest percent contribution for each model.  
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Table 5.4: Top four predictor variables and their average percent contribution (from 10 replicates) 

from the Maxent model. AUC values for each model are reported in parentheses. Variables are 

ranked to show the order of importance per model.  

  

     Predictor Variables Contribution (%) Rank Model Run A: Current variables only 

(0.793)    

     Precipitation of the warmest quarter (Bio18)  31.6  1  

     Annual precipitation (Bio12)  13.5  2  

     Mean temperature of warmest quarter (Bio10)  10.3  3  

     Minimum temperature of coldest month (Bio6)  9.9  4  

  Σ 65.3    

Model Run B: 2050 RCP 4.5 Projection (0.793)      

     Precipitation of the warmest quarter (Bio18)  30.6  1  

     Annual precipitation (Bio12)  15.5  2  

     Mean temperature of warmest quarter (Bio10)  7.8  4  

     Minimum temperature of coldest month (Bio6)  12.2  3  

  Σ 66.1    

Model Run C: 2050 RCP 8.5 Projection (0.715)      

     Precipitation of the warmest quarter (Bio18)  32.5  1  

     Annual precipitation (Bio12)  10.7  3  

     Mean temperature of warmest quarter (Bio10)  11.2  2  

     Minimum temperature of coldest month (Bio6)  9.9  4  

  Σ 64.3    

Model Run D: 2070 RCP 4.5 Projection (0.794)      

     Precipitation of the warmest quarter (Bio18)  37  1  

     Annual precipitation (Bio12)  7.1  4  

     Mean temperature of warmest quarter (Bio10)  9.7  2  

     Minimum temperature of coldest month (Bio6)  9.5  3  

  Σ 63.3    

Model Run E: 2070 RCP 8.5 Projection (0.794)      

     Precipitation of the warmest quarter (Bio18)  31.6  1  

     Annual precipitation (Bio12)  13.8  2  

     Mean temperature of warmest quarter (Bio10)  7.5  4  

     Minimum temperature of coldest month (Bio6)  7.9  3  

  Σ 60.8    

Source: Created by the author  
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Finally, Maxent performs a jackknife test of variable importance. Again, the jackknife test 

of variable importance sifts through the environmental variable in two ways - where first, the 

model eliminates one variable at a time and reporting the most important variable. Second, the 

jackknife test runs each variable independently, reporting which variable has the most 

information not present in any other variable. Model B shows annual precipitation (Bio12) as the 

environmental variable with the highest gain when used in isolation, indicating that it has the 

most useful information by itself. Minimum temperature of the coldest month (Bio6) is the 

environmental variable which decreases the gain the most when it is omitted, indicating Bio6 as 

having the most information that is not present in any other variable (Figure 5.6). Each future 

model’s jackknife test report similar findings (Appendix B).  

  

  

Figure 5.6: Jackknife test evaluating relative importance of environmental variables for mountain 

pine beetle in Alberta, Canada. Note: “Bio10” is mean temperature of the warmest quarter; 

“Bio12” is annual precipitation; “Bio18” is precipitation of the warmest quarter; “Bio6” is 

minimum temperature of the coldest month.  
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CHAPTER 6  

  

DISCUSSION  

  

  

  The Maxent model analyses results indicate that a changing climate will lead to 

significant changes in habitat suitable for the mountain pine beetle. Climatic variables based on 

future climate scenarios were obtained from the CCSM4 climate model, based on CMIP5, for the 

years 2050 and 2070. Moderate Representative Concentration Pathway (RCP) 4.5 as well as the 

identical variables generated using a less optimistic scenario of RCP 8.5 were downloaded for 

both time frames, 2050 and 2070. RCP 4.5 predicts that carbon emissions will peak in 2040 and 

then stabilize. In contrast, RCP 8.5 predicts that carbon emission will continue to grow past 2100.   

Interestingly, these results depict a resounding decrease in overall habitat over time, regardless of 

the emissions scenario under consideration. These results contrast with current concerns by the 

Forestry Division of Alberta and much of the current literature anticipating the continued 

eastward diffusion into the boreal forest.   

It is important, however, to remember that like all models, Maxent models are 

simplifications and abstractions of reality. These model results contain numerous untested and 

untestable assumptions about changing environmental conditions over space and time 

(Evangelista et al., 2011). Furthermore, these models rely on projected climate scenarios and 

although global climate models have significantly improved, they continue to contain numerous 

uncertainties, whether considering the model structure, the unpredictability of future carbon 

emissions, and natural variability that may occur in the future (Woldemeskel et al., 2015).  
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Temperature and precipitation are projected to change significantly within Canada under future 

climate scenarios. Importantly, precipitation is known to be one the most difficult variables to 

accurately predict as GCMs do not include the full range of real-world precipitation-forming 

processes that occur over the extent of the province of Alberta, much less for the North American 

continent (Legates, 2014). Finally, the data used for this analysis shows only the spatial 

distribution of the mountain pine beetle in Alberta, Canada. This spatial distribution does not 

include the full range of climate variability for mountain pine beetle habitat.  

Thus, the Maxent results, which recognized precipitation of the warmest quarter (Bio18) 

as having the highest contribution to model construction, should be interpreted with caution. 

There are copious additional natural and anthropogenic variables that are known to facilitate or 

regulate mountain pine beetle habitat, range and intensity (Evangelista et al., 2011).  Interspecific 

interactions, predation, adaptation, forest management practices, localized climatic conditions 

and extreme weather events all contribute to the evolution or change in habitat suitability for the 

beetle but simply cannot be confidently incorporated into current versions of Maxent models 

(Heikkinen et al., 2006; Evangelista et al., 2011). The wind event, for example, which 

successfully displaced mountain pine beetle populations over the Rocky Mountains in 2005, 

while not unprecedented, is a rare and unpredictable event that simply cannot be anticipated. This 

displacement into entirely novel terrain allowed alarming population growth  leading to 

monumental ecological change which is poised to continue. Finally, the WorldClim data used for 

the current climate models represents averaged measurements gathered between 1970 and 2000. 

Therefore, these results represent a hypothesis of a potential future scenario of mountain pine 

beetle habitat suitability, their possible distribution and forest vulnerability.    
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Despite the varying degrees of uncertainty, these model results and similar studies provide 

valuable insights to forest managers to the potential effects of climate change on biodiversity 

(Heikkinen et al., 2006; Evangelista et al., 2011). Mountain pine beetle is a climate driven 

species. While future carbon emission rates are unpredictable, even under moderate emission 

scenarios, future changes in climate and budding infestations are expected to continue to have 

significant impacts on forest composition, carbon sequestration and cycling, fire regimes and 

hydrology (Evangelista et al., 2011). Some researchers consider the silver lining and speculate 

upon the long-term, positive effects that mountain pine beetle infestations may inflict by default. 

One particular hypothesis of interest is that mountain pine beetle outbreaks may indeed act as a 

natural selection event, eliminating trees that are most susceptible to the beetle and the least 

adapted to the anticipated warmer, drier conditions (Six, Vergobbi, & Cutter, 2018) while 

improving forest heterogeneity and revitalizing ecosystem functions (Evangelista et al., 2011). 

While these factors are not included in the model, changes in the 19 bioclimatic variables that 

were included in the model seem to predict declines in suitable trees and forested regions. 

Analyses such as those completed in this thesis may aid in the development of early warning 

systems for outbreaks in novel areas, providing increased opportunities to plan management and 

research priorities in efforts to make forests more resilient while reducing negative impacts of 

potential mountain pine beetle outbreaks. The study also moves the debate forward in terms of 

potential methods to be applied by other researchers in the future.  
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CHAPTER 7  

CONCLUSION  

  

  

The results presented in this research predict a significant decrease in future suitable 

habitat susceptible to the mountain pine beetle under both moderate and extreme carbon emission 

scenarios. Minimum cold temperatures of the coldest month, Bio6, contains information that is 

present in no other variable, in agreement with research conducted by Bleiker et al., (2017), 

identifying cold temperatures being the most important variable in limiting both distribution and 

abundance of the mountain pine beetle. These Maxent results successfully identified Bio6 as 

being significant while also successfully identifying precipitation as a meaningful variable. 

Summer and winter drought have also been identified by previous research as driving factors 

initiating the spread of mountain pine beetle (Carroll et al., 2006; Seidl et al., 2016; Sidder et al., 

2016) and other bark beetle species (Hart et al., 2017), a significant success of the Maxent model.  

Further study is recommended to continue to refine these results in order to better 

understand possible impacts at higher spatial and temporal resolutions. These future projects 

would include studies of the relationships between the mountain pine beetle and climate at 

smaller and larger spatial resolutions. At smaller scales, it may be possible to include variable 

forest composition, continuity and density which may produce results more informative for 

natural resource managers. At larger scales, this study could be expanded to include  

Saskatchewan, the neighboring province and next potential candidate for mountain pine beetle 

infestation. Including an examination of how climate change may impact the boreal forest is 

needed to better understand potential changes in this novel ecological region. In particular, a 

greater understanding of how drought effects the boreal forest would also improve further 
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research. Finally, while the general circulation model CCSM4 is powerful in isolation, averaging 

this model with two to five additional models would help include a broader variance, potentially 

strengthening the model results.   

Finally, turning to the mountain pine beetle and its future range, it is clear steady 

improvement in predictions are essential for the future preservation of boreal forest regions and 

the important forest product industries that are essential to the provinces’ economy. It is hoped 

that this research will advance these goals and promote the invention of more effective 

monitoring procedures.  
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APPENDIX A  

MOUNTAIN PINE BEETLE PRESENCE DATA 

  

  

Provided from the Forestry Division of Alberta Agriculture and Forestry Department, Forest  

Health Spatial Data (FHSD) provides information on forest health pests across Alberta, Canada. 

The mountain pine beetle heli-GPS data surveys are carried out by observers in rotary wing 

aircraft flying at low elevation and are conducted in known areas of mountain pine beetle 

activity. Heli-GPS surveys are used to intensively cover a specific area where management action 

is being contemplated. The aim is to record the boundaries of disturbance either by sing GPS or 

large-scale maps (1:50,000).   

  The heli-GPS surveys are generally competed on an annual basis, between August 15 and 

September 15. The data is delivered to Edmonton, Alberta by September 30. The survey data is 

generally collected using a computer tablet though paper maps and a hand held GPS unit may be 

utilized as a back up. Each year, the Forest Health Officer (FHO) will determine where to 

conduct Heli-GPS surveys based on where management action is considered for that specific 

year. Al Heli-GPS candidate areas in the Province are categorized into either Primary or 

Secondary Areas based on the anticipated level of control work for the year in question. The data 

standards for each Area are as follows:  

For all heli-GPS surveys, the data is checked to ensure the following:  

• Surveys are completed by September 15th  

• GPS locations of points are within +/- 30 meters  

• Polygon boundaries encompass all fading/red trees  

• Polygon infestation severity is within +/- 10% of actual severity  



www.manaraa.com

   

78  

  

 

Primary Areas (Generally in the leading edge zones)  

• Only patches of three or more trees are GPSed unless the FHO directs surveyors to GPS 

patches of single or two red or fading trees. This can vary between years.  

• The accuracy of the red tree counts are:  

o 1 or 2 trees - +/- 0 trees o 3 – 10 

trees - +/- 1 trees o 11 – 24 trees - +/- 4 

trees o 25+ - +/- 10 trees  

• 95% of all patches of >3 red trees are captured  

Secondary Areas (usually in the active holding zones)  

• Only patches of five or more trees are GPSed unless the FHO directs surveyor to GPS 

sites with less or more red trees. This varies from year to year.  

• The accuracy of the red tree counts are:  

o 5 – 25 trees - +/- 5 trees o 25+ trees 

- +/- 10 trees o 95% of all patches of 

>25 red trees are captured o 80% of all 

patches of >5 <25 red trees  

Known Limitations of the Data:  

• The areas surveyed each year (Primary/Secondary) can be different and therefore, year 

over year comparisons may be difficult.  

• The surveyors do not ground truth all of the red trees identified. Therefore, it is not 

guaranteed that all of the red trees mapped are the result of MPB attack.  
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• The surveyors may not map tree patches less than three red trees in Primary areas and 

may not map patches smaller than five trees in Secondary areas. As a result, the dataset 

does not include all of the MPB killed trees.  

• Grey attacked trees are not captured.  

• The surveyors attempt to distinguish between “new” faders and “old” faders but the 

accuracy of this distinction is not guaranteed and therefore, the data may reflect several 

years and several generations of MPB attack.  
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APPENDIX B  

MAXENT JACKKNIFE TEST RESULTS 

  

  

Appendix B provides the jackknife test of variable importance results for each of the five Maxent 

models in this research.  

  

  

Figure B.1: Jackknife results for Model A, based on the current climate  

  

  

Figure B.2: Jackknife results for Model B, 2050, RCP 4.5 (moderate) climate scenario  
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Figure B.3: Jackknife results for Model C: 2050, RCP 8.5 (extreme) climate scenario  

  

  

Figure B.4: Jackknife results for Model D: 2070, RCP 4.5 (moderate) climate scenario  

  

  

Figure B.5: Jackknife results for Model E: 2070, RCP 8.5 (extreme) climate scenario   
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